Normalized defining polynomial
\( x^{16} + 40 x^{14} - 16 x^{13} - 6516 x^{12} + 16064 x^{11} - 46000 x^{10} - 1009872 x^{9} + 11342580 x^{8} - 12091152 x^{7} - 162023704 x^{6} + 1510348640 x^{5} - 1449183488 x^{4} - 16401426768 x^{3} + 39182469104 x^{2} - 36835875024 x + 12419943838 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6847016061481864788618324763213824=2^{64}\cdot 3^{4}\cdot 7^{6}\cdot 79^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17} a^{13} + \frac{7}{17} a^{12} + \frac{6}{17} a^{11} - \frac{2}{17} a^{10} + \frac{5}{17} a^{9} - \frac{1}{17} a^{8} + \frac{4}{17} a^{7} - \frac{1}{17} a^{6} + \frac{2}{17} a^{5} - \frac{7}{17} a^{4} - \frac{5}{17} a^{3} - \frac{3}{17} a^{2} - \frac{1}{17} a - \frac{5}{17}$, $\frac{1}{85} a^{14} + \frac{2}{85} a^{13} + \frac{1}{17} a^{12} + \frac{36}{85} a^{11} - \frac{19}{85} a^{10} + \frac{42}{85} a^{9} - \frac{5}{17} a^{8} + \frac{6}{17} a^{7} - \frac{2}{17} a^{6} - \frac{1}{5} a^{5} - \frac{38}{85} a^{4} + \frac{22}{85} a^{3} - \frac{37}{85} a^{2} + \frac{42}{85}$, $\frac{1}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{15} + \frac{603048852927263226890258179274641688974649926964894012514231764073372407}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{14} - \frac{5085808006459941703474076808428810507258802387020678797877820494337219912}{303538982877890545643578501734587164060527746526914793329551312732297699783} a^{13} + \frac{554563347802295219844469272106081559744864132473369919076444674457126305841}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{12} + \frac{719716415310852086301301807630372971132817352484132904729755937444483186686}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{11} + \frac{326872514611243012341488189094348747535187652458873164601218524192068790742}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{10} + \frac{97240984667540914445553252008907120061375016422586828984001893210400979546}{303538982877890545643578501734587164060527746526914793329551312732297699783} a^{9} - \frac{99013560641083300311742500097216353804303203619585713467335584103157473360}{303538982877890545643578501734587164060527746526914793329551312732297699783} a^{8} + \frac{68851017627334884425106043843295829832797030407466254274797231700820396136}{303538982877890545643578501734587164060527746526914793329551312732297699783} a^{7} + \frac{455172705531058099302911454607138193498773671125750149958694329673184135438}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{6} - \frac{409059374971489302563262238489396520868325547660061290140039782064078217503}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{5} + \frac{60327297237931233012353154409954301841638797204534257388250778420014778982}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{4} + \frac{59232080542945970108025560383486043576513672606203019890935609251490647713}{1517694914389452728217892508672935820302638732634573966647756563661488498915} a^{3} - \frac{398419916820043840110681519586984721181057373312299293107442161798209555}{7403389826290013308379963456941150342939701134802799837306129578836529263} a^{2} - \frac{22411564260522384177136865661745363864423145159218902609045602368044104339}{89276171434673689895170147568996224723684631331445527449868033156558146995} a - \frac{130886223509529031131035227255022560817249272287297160565564185585704801395}{303538982877890545643578501734587164060527746526914793329551312732297699783}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94167996561.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T467):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7168.1, \(\Q(\zeta_{16})^+\), 4.4.14336.1, 8.8.3288334336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 79.4.2.2 | $x^{4} - 79 x^{2} + 18723$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |