Normalized defining polynomial
\( x^{16} + 72 x^{14} - 160 x^{13} - 3048 x^{12} - 23232 x^{11} - 255872 x^{10} - 545552 x^{9} + 3043444 x^{8} + 33122208 x^{7} + 217453872 x^{6} + 341051488 x^{5} - 3246277392 x^{4} - 14285640128 x^{3} - 3013742336 x^{2} + 72795641824 x + 100457697148 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6847016061481864788618324763213824=2^{64}\cdot 3^{4}\cdot 7^{6}\cdot 79^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} + \frac{1}{12} a^{10} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{20842093655890991170689360662635650718678680652118613132538812115908791028} a^{15} - \frac{169007910479943832557282674735637014308547875753230165089362960494549353}{5210523413972747792672340165658912679669670163029653283134703028977197757} a^{14} - \frac{492763882107736324925354766159528887293356888414874907039316552188345623}{20842093655890991170689360662635650718678680652118613132538812115908791028} a^{13} + \frac{363036102884442684528796859873179442093252492261244866487960540804465359}{20842093655890991170689360662635650718678680652118613132538812115908791028} a^{12} - \frac{2213552498098667815267673666577641279828667931094249716247932887115190639}{20842093655890991170689360662635650718678680652118613132538812115908791028} a^{11} + \frac{273295340847843892763834189257943003718383949613561447832165730601438271}{6947364551963663723563120220878550239559560217372871044179604038636263676} a^{10} + \frac{332331060484467667539058269754694886291810545392180860080495099543037739}{10421046827945495585344680331317825359339340326059306566269406057954395514} a^{9} + \frac{22822006404060191490776865996945418685896208290890155354287122277928665}{3473682275981831861781560110439275119779780108686435522089802019318131838} a^{8} - \frac{429627206183614083473425458404555953418535935305471350446365271360954339}{1736841137990915930890780055219637559889890054343217761044901009659065919} a^{7} + \frac{744876201137987723915626213774455098491745058313390412965373246861314633}{3473682275981831861781560110439275119779780108686435522089802019318131838} a^{6} + \frac{63543351375340310561279787569350765854043440254135499076692309663375581}{3473682275981831861781560110439275119779780108686435522089802019318131838} a^{5} - \frac{1827895640254533246118886839549168501138448964519397585736343288734280517}{10421046827945495585344680331317825359339340326059306566269406057954395514} a^{4} - \frac{3378333559751782563580439403139921405444597688341510532717674919926748947}{10421046827945495585344680331317825359339340326059306566269406057954395514} a^{3} + \frac{56847700519048810225154164990107103096757119543705610692547668624646095}{3473682275981831861781560110439275119779780108686435522089802019318131838} a^{2} - \frac{290327098858349611147033518935702239444574456807349747007214042639231866}{5210523413972747792672340165658912679669670163029653283134703028977197757} a - \frac{1600760890918152857319566480719780177319110428165984850565626586212504}{4331274658331461174291222082841988927406209611828473219563344163738319}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28102986463.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T467):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7168.1, \(\Q(\zeta_{16})^+\), 4.4.14336.1, 8.8.3288334336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 79 | Data not computed | ||||||