Normalized defining polynomial
\( x^{16} - 4 x^{15} - 20 x^{14} + 215 x^{13} - 2055 x^{12} + 4318 x^{11} - 583 x^{10} - 110764 x^{9} + 671213 x^{8} - 1272579 x^{7} + 2452222 x^{6} + 6911503 x^{5} - 13031290 x^{4} + 10060145 x^{3} + 218575 x^{2} - 19306519 x + 9916201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68372792983010839504523425519489=17^{14}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{4963032000314970473063813652053497218402963530223357955680286} a^{15} - \frac{251912512737062798879485040441987743850809931677677970761947}{4963032000314970473063813652053497218402963530223357955680286} a^{14} - \frac{1083908001763002259602028438568647581568608847271287099224251}{4963032000314970473063813652053497218402963530223357955680286} a^{13} + \frac{366287288005145651155585491631666027738266207100725354580772}{2481516000157485236531906826026748609201481765111678977840143} a^{12} + \frac{301548189015101725909088334191827989656025731992686866170183}{4963032000314970473063813652053497218402963530223357955680286} a^{11} + \frac{7041277519419462226014304118016884579060618678847189425295}{33308939599429332033985326523848974620154117652505758091814} a^{10} + \frac{1179218278886361186517206796085903721800699272182530913041477}{4963032000314970473063813652053497218402963530223357955680286} a^{9} + \frac{695302673848708117087584501475378743362356224257977646404607}{4963032000314970473063813652053497218402963530223357955680286} a^{8} + \frac{517002170122409442756293468652382210287978268363797264231811}{2481516000157485236531906826026748609201481765111678977840143} a^{7} + \frac{2225876615282599295720291635678722588074828293099819141962195}{4963032000314970473063813652053497218402963530223357955680286} a^{6} - \frac{1469939269025971353924312672183978822778514195096590273864791}{4963032000314970473063813652053497218402963530223357955680286} a^{5} - \frac{294799916139377136374530050915619430747116910311732962639207}{4963032000314970473063813652053497218402963530223357955680286} a^{4} + \frac{142057219300716291015472533982865082979791439691586889371703}{381771692331920805620293357850269016800227963863335227360022} a^{3} - \frac{257277534875519731286270189784038097112184550089648243132259}{2481516000157485236531906826026748609201481765111678977840143} a^{2} + \frac{224257652843488730344654499204417363790649977002017279837275}{4963032000314970473063813652053497218402963530223357955680286} a + \frac{134224951677922643535414679266790993283934060223616574965}{788033026407585022715753199754445414163696972090085416907}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1640914604.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.1842010303097.2, 8.6.123414690307499.1, 8.6.7259687665147.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 67 | Data not computed | ||||||