Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} + 32 x^{13} - 1824 x^{12} + 16720 x^{11} - 103232 x^{10} + 425872 x^{9} - 1039068 x^{8} + 1362160 x^{7} + 2223088 x^{6} - 10653152 x^{5} + 14305216 x^{4} - 25222144 x^{3} + 4498080 x^{2} + 40496544 x + 11812348 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6744519278804597787590135906304=2^{58}\cdot 3^{4}\cdot 7^{6}\cdot 1567^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 1567$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{68} a^{12} + \frac{2}{17} a^{11} - \frac{1}{34} a^{10} + \frac{2}{17} a^{9} - \frac{7}{34} a^{8} - \frac{7}{17} a^{7} + \frac{4}{17} a^{6} + \frac{5}{17} a^{5} + \frac{15}{34} a^{4} + \frac{4}{17} a^{3} + \frac{3}{17} a^{2} + \frac{2}{17} a$, $\frac{1}{68} a^{13} + \frac{1}{34} a^{11} + \frac{7}{68} a^{10} + \frac{7}{68} a^{9} + \frac{4}{17} a^{8} + \frac{1}{34} a^{7} - \frac{3}{34} a^{6} - \frac{7}{17} a^{5} - \frac{5}{17} a^{4} + \frac{5}{17} a^{3} + \frac{7}{34} a^{2} - \frac{15}{34} a$, $\frac{1}{2652} a^{14} + \frac{5}{884} a^{13} + \frac{1}{2652} a^{12} - \frac{5}{2652} a^{11} + \frac{89}{884} a^{10} - \frac{71}{1326} a^{9} - \frac{157}{663} a^{8} - \frac{49}{102} a^{7} + \frac{94}{663} a^{6} + \frac{161}{1326} a^{5} + \frac{83}{1326} a^{4} + \frac{659}{1326} a^{3} + \frac{47}{102} a^{2} + \frac{200}{663} a - \frac{2}{39}$, $\frac{1}{722944899763920895425013406689362655995413979450875292} a^{15} + \frac{21235963567649468887563680746306845305847398160653}{361472449881960447712506703344681327997706989725437646} a^{14} + \frac{3873774303851518106858254838361066685414342960704607}{722944899763920895425013406689362655995413979450875292} a^{13} - \frac{1016568984685483808158018050860575251292279398300809}{361472449881960447712506703344681327997706989725437646} a^{12} + \frac{37162786806696301260455836534604504921884499411333275}{722944899763920895425013406689362655995413979450875292} a^{11} + \frac{18312007991200564980425359520133710030418346934009875}{361472449881960447712506703344681327997706989725437646} a^{10} + \frac{57464373809401145490356947027410338230859103911409913}{722944899763920895425013406689362655995413979450875292} a^{9} - \frac{26098373875785672126541173321710254703425429328726573}{120490816627320149237502234448227109332568996575145882} a^{8} + \frac{140385566290585678883182718515790092953253831860938971}{361472449881960447712506703344681327997706989725437646} a^{7} + \frac{2259088558466180416026489846013353070273195068044527}{10631542643587071991544314804255333176403146756630519} a^{6} - \frac{83034392211674897426346051598515747839184964637704954}{180736224940980223856253351672340663998853494862718823} a^{5} + \frac{51431486342051108727390201125742305674584845165087741}{180736224940980223856253351672340663998853494862718823} a^{4} - \frac{79551209482437413856123502299523498832221428437641919}{361472449881960447712506703344681327997706989725437646} a^{3} - \frac{8624815048625153208950761149356736432596886062271336}{60245408313660074618751117224113554666284498287572941} a^{2} + \frac{67999441071509011537843975613041847535649960103232737}{361472449881960447712506703344681327997706989725437646} a + \frac{2007540397060132975148261423431991512282306804069501}{10631542643587071991544314804255333176403146756630519}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2471383441.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n781 are not computed |
| Character table for t16n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.14336.1, 4.4.7168.1, 8.8.3288334336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1567 | Data not computed | ||||||