Normalized defining polynomial
\( x^{16} - 4 x^{15} - 4 x^{14} + 44 x^{13} - 82 x^{12} + 36 x^{11} + 104 x^{10} - 268 x^{9} + 538 x^{8} - 924 x^{7} + 636 x^{6} + 492 x^{5} - 1022 x^{4} + 412 x^{3} + 184 x^{2} - 188 x + 41 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6710886400000000000000=2^{40}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{82} a^{13} - \frac{15}{82} a^{12} + \frac{5}{82} a^{11} + \frac{3}{82} a^{10} + \frac{3}{41} a^{9} + \frac{4}{41} a^{8} - \frac{13}{41} a^{7} - \frac{8}{41} a^{6} - \frac{21}{82} a^{5} - \frac{1}{2} a^{4} + \frac{5}{82} a^{3} + \frac{1}{82} a^{2} + \frac{16}{41} a$, $\frac{1}{1558} a^{14} + \frac{4}{779} a^{13} + \frac{275}{1558} a^{12} + \frac{77}{1558} a^{11} - \frac{9}{82} a^{10} + \frac{105}{1558} a^{9} + \frac{281}{1558} a^{8} - \frac{307}{779} a^{7} + \frac{27}{82} a^{6} + \frac{148}{779} a^{5} - \frac{733}{1558} a^{4} + \frac{321}{1558} a^{3} - \frac{23}{82} a^{2} - \frac{125}{1558} a + \frac{11}{38}$, $\frac{1}{520311238} a^{15} - \frac{44259}{260155619} a^{14} + \frac{178594}{260155619} a^{13} - \frac{73188177}{520311238} a^{12} - \frac{21632861}{260155619} a^{11} + \frac{120384751}{520311238} a^{10} + \frac{23973280}{260155619} a^{9} - \frac{25459062}{260155619} a^{8} + \frac{5169721}{520311238} a^{7} - \frac{54765224}{260155619} a^{6} + \frac{9388627}{260155619} a^{5} - \frac{119326483}{520311238} a^{4} - \frac{37740493}{260155619} a^{3} - \frac{253058883}{520311238} a^{2} - \frac{116829740}{260155619} a + \frac{3159758}{6345259}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102168.613642 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times OD_{16}$ (as 16T15):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_8:C_2)$ |
| Character table for $C_2 \times (C_8:C_2)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.5120000000.2, 8.4.5120000000.1, \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||