Normalized defining polynomial
\( x^{16} - 8 x^{15} + 58 x^{14} - 184 x^{13} + 213 x^{12} + 50 x^{11} - 1926 x^{10} + 4497 x^{9} - 6310 x^{8} + 25938 x^{7} - 226076 x^{6} + 535769 x^{5} + 1230405 x^{4} - 3972392 x^{3} + 137642 x^{2} + 3400920 x - 96931 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66814405147552869881269516352=2^{6}\cdot 43^{6}\cdot 2777^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{532978243055847392119082571748292010820811707765059} a^{15} + \frac{54760099410052335070822825837638300048904154445109}{532978243055847392119082571748292010820811707765059} a^{14} - \frac{112104179403214794116406866847200754443593834179841}{532978243055847392119082571748292010820811707765059} a^{13} - \frac{9734827256156062292179781586744218727199950553012}{532978243055847392119082571748292010820811707765059} a^{12} + \frac{130336916697656503408181834253692297342312372026424}{532978243055847392119082571748292010820811707765059} a^{11} + \frac{218653597747911278733523246054200797590470849672632}{532978243055847392119082571748292010820811707765059} a^{10} + \frac{206654433424110092887132957064201279180585308845302}{532978243055847392119082571748292010820811707765059} a^{9} - \frac{66176991157625582082478652719335735658841680563624}{177659414351949130706360857249430670273603902588353} a^{8} + \frac{116205008733423467755893688397083775341883580316909}{532978243055847392119082571748292010820811707765059} a^{7} - \frac{144063158987081056367754665646772820525114090269208}{532978243055847392119082571748292010820811707765059} a^{6} - \frac{119369726878666411060244620251536090512619910304766}{532978243055847392119082571748292010820811707765059} a^{5} + \frac{71530266095516669607992957202520016443140059363962}{177659414351949130706360857249430670273603902588353} a^{4} - \frac{486794711465638849891130537788930299148532161412}{1724848683028632336954959779120686119161202937751} a^{3} + \frac{23675042202257375679557311804155129403900560074371}{532978243055847392119082571748292010820811707765059} a^{2} + \frac{154360870953352627797271984894955171267512077755528}{532978243055847392119082571748292010820811707765059} a - \frac{54748942823823188287339770320960647127505486762071}{532978243055847392119082571748292010820811707765059}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 355842206.021 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 104 conjugacy class representatives for t16n1847 are not computed |
| Character table for t16n1847 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||