Normalized defining polynomial
\( x^{16} - 4 x^{15} - x^{14} + 21 x^{13} - 424 x^{12} + 999 x^{11} - 1667 x^{10} - 1016 x^{9} + 73917 x^{8} - 67715 x^{7} + 99993 x^{6} + 778026 x^{5} - 2204236 x^{4} - 5407891 x^{3} - 5505995 x^{2} + 8743206 x + 21153679 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66688975910627504451630153142433=13^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{4}{13} a^{6} - \frac{1}{13} a^{5} - \frac{1}{13} a^{4} + \frac{1}{13} a^{3} + \frac{4}{13} a^{2} + \frac{2}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{9} - \frac{6}{13} a^{6} - \frac{3}{13} a^{5} - \frac{1}{13} a^{4} + \frac{6}{13} a^{3} - \frac{3}{13} a^{2} + \frac{5}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{10} - \frac{6}{13} a^{7} - \frac{3}{13} a^{6} - \frac{1}{13} a^{5} + \frac{6}{13} a^{4} - \frac{3}{13} a^{3} + \frac{5}{13} a^{2} + \frac{2}{13} a$, $\frac{1}{13} a^{11} - \frac{2}{13} a^{7} - \frac{3}{13} a^{6} + \frac{4}{13} a^{4} - \frac{2}{13} a^{3} - \frac{1}{13} a + \frac{6}{13}$, $\frac{1}{26} a^{12} - \frac{1}{26} a^{10} - \frac{1}{26} a^{8} - \frac{6}{13} a^{7} - \frac{3}{13} a^{6} - \frac{9}{26} a^{5} + \frac{2}{13} a^{4} - \frac{9}{26} a^{3} - \frac{1}{13} a^{2} - \frac{7}{26} a + \frac{1}{26}$, $\frac{1}{26} a^{13} - \frac{1}{26} a^{11} - \frac{1}{26} a^{9} - \frac{2}{13} a^{7} - \frac{1}{2} a^{6} - \frac{4}{13} a^{5} + \frac{5}{26} a^{4} + \frac{5}{13} a^{3} - \frac{11}{26} a^{2} - \frac{1}{26} a + \frac{6}{13}$, $\frac{1}{503854} a^{14} + \frac{2533}{503854} a^{13} - \frac{8877}{503854} a^{12} + \frac{7}{503854} a^{11} - \frac{15709}{503854} a^{10} - \frac{18393}{503854} a^{9} - \frac{3173}{251927} a^{8} + \frac{30911}{503854} a^{7} - \frac{172827}{503854} a^{6} - \frac{102281}{503854} a^{5} - \frac{32427}{503854} a^{4} + \frac{70985}{503854} a^{3} + \frac{84073}{251927} a^{2} - \frac{107943}{503854} a - \frac{21482}{251927}$, $\frac{1}{26269211257704686895231630900345056129918} a^{15} - \frac{2061056797578473093361582089809909}{13134605628852343447615815450172528064959} a^{14} + \frac{84037611755570374419469636840836608841}{26269211257704686895231630900345056129918} a^{13} - \frac{79546471701104220074633347519286021925}{26269211257704686895231630900345056129918} a^{12} + \frac{482702550446788168438447501473543947197}{26269211257704686895231630900345056129918} a^{11} - \frac{286806461586915074593050476526166695485}{26269211257704686895231630900345056129918} a^{10} - \frac{417898943440291370887632198161543724112}{13134605628852343447615815450172528064959} a^{9} - \frac{250107163842048837391022001309297752931}{13134605628852343447615815450172528064959} a^{8} - \frac{3502493199978022128794801919751636455014}{13134605628852343447615815450172528064959} a^{7} + \frac{10464999477133287292350152316549431552593}{26269211257704686895231630900345056129918} a^{6} - \frac{5434408267611834428262255516697439672471}{26269211257704686895231630900345056129918} a^{5} - \frac{3048889587333034280328988638103094132029}{26269211257704686895231630900345056129918} a^{4} + \frac{3801348931703655595844302943755894043549}{13134605628852343447615815450172528064959} a^{3} + \frac{207408265188569518942580508057219838609}{1010354279142487957508908880782502158843} a^{2} - \frac{153560266417488030770208604292683352939}{2020708558284975915017817761565004317686} a + \frac{7733463200826619994563341053543287151741}{26269211257704686895231630900345056129918}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1020867179.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.11719682839553.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17 | Data not computed | ||||||