Normalized defining polynomial
\( x^{16} - x^{15} - 84 x^{14} + 526 x^{13} - 1461 x^{12} + 1070 x^{11} + 11918 x^{10} - 50814 x^{9} + 95150 x^{8} - 83318 x^{7} - 55402 x^{6} - 449804 x^{5} + 2075106 x^{4} - 1186125 x^{3} - 2215830 x^{2} + 2558448 x + 1672427 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66688975910627504451630153142433=13^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1313} a^{14} - \frac{42}{101} a^{13} - \frac{406}{1313} a^{12} - \frac{257}{1313} a^{11} + \frac{522}{1313} a^{10} + \frac{28}{1313} a^{9} - \frac{437}{1313} a^{8} + \frac{105}{1313} a^{7} - \frac{46}{1313} a^{6} + \frac{463}{1313} a^{5} + \frac{69}{1313} a^{4} - \frac{197}{1313} a^{3} - \frac{581}{1313} a^{2} - \frac{85}{1313} a + \frac{415}{1313}$, $\frac{1}{12811144637189090497649703918226549394870389432283} a^{15} - \frac{170157857880304532617486518746362039290156258}{12811144637189090497649703918226549394870389432283} a^{14} + \frac{4575781621444035591783766284117318592969990229332}{12811144637189090497649703918226549394870389432283} a^{13} + \frac{753814575983515153737083405467955217382782149997}{12811144637189090497649703918226549394870389432283} a^{12} + \frac{3216426403789164364529938519573323717388309581791}{12811144637189090497649703918226549394870389432283} a^{11} + \frac{193109925707763492744854002448967989007262802824}{12811144637189090497649703918226549394870389432283} a^{10} - \frac{3519246188476721932409061065789455288435586789253}{12811144637189090497649703918226549394870389432283} a^{9} + \frac{4032910241733586388979090140472574552945410530974}{12811144637189090497649703918226549394870389432283} a^{8} + \frac{717151101642894575153072532591013427476345313399}{12811144637189090497649703918226549394870389432283} a^{7} + \frac{2320557495268775135704456780618883086545848015601}{12811144637189090497649703918226549394870389432283} a^{6} - \frac{5212104078278751538666254505843253704137230376393}{12811144637189090497649703918226549394870389432283} a^{5} - \frac{2288200436480687773873671874911183104062340180090}{12811144637189090497649703918226549394870389432283} a^{4} - \frac{199854336906023692432269200037996210327542247618}{12811144637189090497649703918226549394870389432283} a^{3} - \frac{802294395171693931657305354093858542317869230938}{12811144637189090497649703918226549394870389432283} a^{2} + \frac{4859692558649496426984395501704596766313520783031}{12811144637189090497649703918226549394870389432283} a + \frac{4001615257469664439577230793118507875313873365585}{12811144637189090497649703918226549394870389432283}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1449358615.25 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.11719682839553.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17 | Data not computed | ||||||