Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 936 x^{12} + 6162 x^{11} - 29406 x^{10} + 89830 x^{9} - 143598 x^{8} + 104338 x^{7} + 207532 x^{6} - 679458 x^{5} + 755326 x^{4} - 401668 x^{3} - 75136 x^{2} + 167061 x + 31417 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66688975910627504451630153142433=13^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{13} a^{4} - \frac{2}{13} a^{3} - \frac{5}{13} a^{2} + \frac{6}{13} a - \frac{4}{13}$, $\frac{1}{13} a^{5} + \frac{4}{13} a^{3} - \frac{4}{13} a^{2} - \frac{5}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{6} + \frac{4}{13} a^{3} + \frac{2}{13} a^{2} - \frac{6}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{7} - \frac{3}{13} a^{3} + \frac{1}{13} a^{2} + \frac{5}{13} a + \frac{3}{13}$, $\frac{1}{169} a^{8} - \frac{4}{169} a^{7} - \frac{6}{169} a^{6} + \frac{6}{169} a^{5} + \frac{6}{169} a^{4} - \frac{5}{169} a^{3} - \frac{54}{169} a^{2} - \frac{9}{169} a + \frac{3}{169}$, $\frac{1}{169} a^{9} + \frac{4}{169} a^{7} - \frac{5}{169} a^{6} + \frac{4}{169} a^{5} + \frac{6}{169} a^{4} - \frac{9}{169} a^{3} - \frac{4}{169} a^{2} + \frac{71}{169} a + \frac{51}{169}$, $\frac{1}{169} a^{10} - \frac{2}{169} a^{7} + \frac{2}{169} a^{6} - \frac{5}{169} a^{5} + \frac{6}{169} a^{4} - \frac{75}{169} a^{3} - \frac{25}{169} a^{2} + \frac{9}{169} a - \frac{51}{169}$, $\frac{1}{169} a^{11} - \frac{6}{169} a^{7} - \frac{4}{169} a^{6} + \frac{5}{169} a^{5} + \frac{2}{169} a^{4} + \frac{4}{169} a^{3} - \frac{8}{169} a^{2} - \frac{30}{169} a + \frac{58}{169}$, $\frac{1}{103259} a^{12} - \frac{6}{103259} a^{11} + \frac{114}{103259} a^{10} + \frac{96}{103259} a^{9} - \frac{277}{103259} a^{8} - \frac{1367}{103259} a^{7} - \frac{2289}{103259} a^{6} - \frac{527}{103259} a^{5} + \frac{3838}{103259} a^{4} + \frac{15517}{103259} a^{3} - \frac{49084}{103259} a^{2} - \frac{19784}{103259} a + \frac{21880}{103259}$, $\frac{1}{103259} a^{13} + \frac{6}{7943} a^{11} + \frac{1}{611} a^{10} + \frac{23}{7943} a^{9} + \frac{2}{7943} a^{8} + \frac{180}{7943} a^{7} - \frac{157}{7943} a^{6} - \frac{136}{7943} a^{5} - \frac{184}{7943} a^{4} + \frac{3292}{7943} a^{3} - \frac{253}{7943} a^{2} - \frac{210}{7943} a + \frac{28632}{103259}$, $\frac{1}{23533035877} a^{14} - \frac{7}{23533035877} a^{13} + \frac{7032}{1810233529} a^{12} - \frac{3245}{139248733} a^{11} + \frac{4890601}{1810233529} a^{10} - \frac{2643440}{1810233529} a^{9} + \frac{3633099}{1810233529} a^{8} - \frac{63404415}{1810233529} a^{7} + \frac{41204211}{1810233529} a^{6} + \frac{61956925}{1810233529} a^{5} - \frac{19961623}{1810233529} a^{4} - \frac{539289997}{1810233529} a^{3} - \frac{568649034}{1810233529} a^{2} - \frac{8627658735}{23533035877} a + \frac{9864466206}{23533035877}$, $\frac{1}{2376836623577} a^{15} + \frac{43}{2376836623577} a^{14} - \frac{5606509}{2376836623577} a^{13} + \frac{502256}{182833586429} a^{12} - \frac{471730226}{182833586429} a^{11} - \frac{120829780}{182833586429} a^{10} + \frac{348058865}{182833586429} a^{9} + \frac{32015546}{182833586429} a^{8} - \frac{2618671598}{182833586429} a^{7} - \frac{27666241}{14064122033} a^{6} + \frac{1298207631}{182833586429} a^{5} - \frac{6604215829}{182833586429} a^{4} - \frac{821084987}{1810233529} a^{3} + \frac{358084095089}{2376836623577} a^{2} + \frac{169526309171}{2376836623577} a - \frac{11220608445}{2376836623577}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1231555092.81 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.11719682839553.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17 | Data not computed | ||||||