Normalized defining polynomial
\( x^{16} - 2 x^{15} - 55 x^{14} - 164 x^{13} + 1586 x^{12} + 7111 x^{11} - 13169 x^{10} - 111033 x^{9} - 214461 x^{8} - 84916 x^{7} + 846586 x^{6} + 4107675 x^{5} + 11276590 x^{4} + 19008036 x^{3} + 18151962 x^{2} + 8356311 x + 1214071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(662966878170355779548558581239481=13^{14}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{1}{13} a^{7} - \frac{2}{13} a^{6} - \frac{6}{13} a^{5} + \frac{5}{13} a^{4} + \frac{6}{13} a^{3} - \frac{2}{13} a^{2} + \frac{1}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{9} - \frac{3}{13} a^{7} + \frac{5}{13} a^{6} - \frac{1}{13} a^{5} - \frac{2}{13} a^{4} + \frac{4}{13} a^{3} - \frac{1}{13} a^{2} + \frac{2}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{10} + \frac{2}{13} a^{7} + \frac{6}{13} a^{6} + \frac{6}{13} a^{5} + \frac{6}{13} a^{4} + \frac{4}{13} a^{3} - \frac{4}{13} a^{2} + \frac{4}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{11} - \frac{5}{13} a^{7} - \frac{3}{13} a^{6} + \frac{5}{13} a^{5} - \frac{6}{13} a^{4} - \frac{3}{13} a^{3} - \frac{5}{13} a^{2} + \frac{1}{13} a - \frac{2}{13}$, $\frac{1}{13} a^{12} + \frac{5}{13} a^{7} - \frac{5}{13} a^{6} + \frac{3}{13} a^{5} - \frac{4}{13} a^{4} - \frac{1}{13} a^{3} + \frac{4}{13} a^{2} + \frac{3}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{13} - \frac{5}{13}$, $\frac{1}{689} a^{14} - \frac{9}{689} a^{13} + \frac{19}{689} a^{12} - \frac{25}{689} a^{11} + \frac{9}{689} a^{10} - \frac{11}{689} a^{9} - \frac{8}{689} a^{8} + \frac{149}{689} a^{7} - \frac{200}{689} a^{6} - \frac{98}{689} a^{5} + \frac{305}{689} a^{4} + \frac{15}{53} a^{3} + \frac{127}{689} a^{2} - \frac{6}{689} a + \frac{3}{13}$, $\frac{1}{1508141497573547214829021807518454869910187} a^{15} + \frac{807203969794435843633541651185165194726}{1508141497573547214829021807518454869910187} a^{14} + \frac{30936457371272640727789224962423666940963}{1508141497573547214829021807518454869910187} a^{13} + \frac{33584464218426589783205962112771045551457}{1508141497573547214829021807518454869910187} a^{12} + \frac{33471988582060108811259543927081108113146}{1508141497573547214829021807518454869910187} a^{11} + \frac{42217255582558168887073767089731654001696}{1508141497573547214829021807518454869910187} a^{10} - \frac{28855151340633101937835430975083726718789}{1508141497573547214829021807518454869910187} a^{9} - \frac{37218548569058822033860686089988508174008}{1508141497573547214829021807518454869910187} a^{8} - \frac{675991633646767070604729960060865307937312}{1508141497573547214829021807518454869910187} a^{7} - \frac{459313784579747860796553297442944549790678}{1508141497573547214829021807518454869910187} a^{6} - \frac{469915385630093397190733250954955886779935}{1508141497573547214829021807518454869910187} a^{5} + \frac{100416663382098680930761543293721694758052}{1508141497573547214829021807518454869910187} a^{4} - \frac{653000823935024791720797393500932886312375}{1508141497573547214829021807518454869910187} a^{3} + \frac{39206318142917220210013460660882894635525}{116010884428734401140693985193727297685399} a^{2} + \frac{260603521689399627797871077250440464098875}{1508141497573547214829021807518454869910187} a - \frac{12285235910187971937929763268904990649603}{28455499954217871977906071839970846602079}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4584367839.59 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{221}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{13}, \sqrt{17})\), 8.8.116507435287321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $17$ | 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |