Normalized defining polynomial
\( x^{16} - 6 x^{15} - 40 x^{14} + 200 x^{13} - 13 x^{12} + 3887 x^{11} - 38363 x^{10} + 110448 x^{9} + 2743 x^{8} - 478075 x^{7} + 351039 x^{6} + 846560 x^{5} + 41314 x^{4} - 742224 x^{3} - 495964 x^{2} + 238045 x + 216037 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(662966878170355779548558581239481=13^{14}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{3}{13} a^{7} - \frac{5}{13} a^{6} - \frac{6}{13} a^{5} + \frac{2}{13} a^{4} + \frac{2}{13} a^{3} - \frac{2}{13} a^{2} + \frac{3}{13} a - \frac{4}{13}$, $\frac{1}{13} a^{9} - \frac{1}{13} a^{7} + \frac{5}{13} a^{6} - \frac{3}{13} a^{5} - \frac{5}{13} a^{4} + \frac{4}{13} a^{3} - \frac{3}{13} a^{2} + \frac{5}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{10} + \frac{2}{13} a^{7} + \frac{5}{13} a^{6} + \frac{2}{13} a^{5} + \frac{6}{13} a^{4} - \frac{1}{13} a^{3} + \frac{3}{13} a^{2} + \frac{4}{13} a - \frac{4}{13}$, $\frac{1}{13} a^{11} - \frac{2}{13} a^{7} - \frac{1}{13} a^{6} + \frac{5}{13} a^{5} - \frac{5}{13} a^{4} - \frac{1}{13} a^{3} - \frac{5}{13} a^{2} + \frac{3}{13} a - \frac{5}{13}$, $\frac{1}{13} a^{12} + \frac{6}{13} a^{7} - \frac{5}{13} a^{6} - \frac{4}{13} a^{5} + \frac{3}{13} a^{4} - \frac{1}{13} a^{3} - \frac{1}{13} a^{2} + \frac{1}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{13} - \frac{2}{13}$, $\frac{1}{13} a^{14} - \frac{2}{13} a$, $\frac{1}{410509474236269484565800857992208236426901} a^{15} + \frac{13884755061631948250610333318044080779565}{410509474236269484565800857992208236426901} a^{14} + \frac{3948984988253100603105677500051799910625}{410509474236269484565800857992208236426901} a^{13} + \frac{3103405989933432493838342730116612676934}{410509474236269484565800857992208236426901} a^{12} + \frac{13772340237143903605487584124531502540285}{410509474236269484565800857992208236426901} a^{11} - \frac{5733279197929595708985568057967813238204}{410509474236269484565800857992208236426901} a^{10} + \frac{334415834046805640223531928233791383806}{31577651864328421889676989076323710494377} a^{9} - \frac{11459218963340485941036673985863622784742}{410509474236269484565800857992208236426901} a^{8} - \frac{93656431424205132596288855823615799865576}{410509474236269484565800857992208236426901} a^{7} + \frac{61365543674172238553779294212833843080960}{410509474236269484565800857992208236426901} a^{6} + \frac{10890246923722859262194205345924828666119}{410509474236269484565800857992208236426901} a^{5} - \frac{4708596887287233372443013253368045746009}{31577651864328421889676989076323710494377} a^{4} - \frac{81061057315685780066904648271551956347755}{410509474236269484565800857992208236426901} a^{3} + \frac{197085227696608680914933277450562580351879}{410509474236269484565800857992208236426901} a^{2} - \frac{171212870327037768644965037541805394444440}{410509474236269484565800857992208236426901} a + \frac{117756873072740998699841816084945673905705}{410509474236269484565800857992208236426901}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5979911668.23 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{221}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{13}, \sqrt{17})\), 8.8.116507435287321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $17$ | 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |