Normalized defining polynomial
\( x^{16} - 4 x^{15} - x^{14} + 21 x^{13} - 424 x^{12} + 2767 x^{11} - 5645 x^{10} - 6762 x^{9} + 78779 x^{8} - 326727 x^{7} + 1031729 x^{6} - 2463602 x^{5} + 3719006 x^{4} - 2537101 x^{3} - 811071 x^{2} + 2329344 x - 1021019 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(662966878170355779548558581239481=13^{14}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{17} a^{8} - \frac{2}{17} a^{7} + \frac{6}{17} a^{6} - \frac{3}{17} a^{5} + \frac{2}{17} a^{4} + \frac{3}{17} a^{3} + \frac{6}{17} a^{2} + \frac{2}{17} a + \frac{1}{17}$, $\frac{1}{17} a^{9} + \frac{2}{17} a^{7} - \frac{8}{17} a^{6} - \frac{4}{17} a^{5} + \frac{7}{17} a^{4} - \frac{5}{17} a^{3} - \frac{3}{17} a^{2} + \frac{5}{17} a + \frac{2}{17}$, $\frac{1}{17} a^{10} - \frac{4}{17} a^{7} + \frac{1}{17} a^{6} - \frac{4}{17} a^{5} + \frac{8}{17} a^{4} + \frac{8}{17} a^{3} - \frac{7}{17} a^{2} - \frac{2}{17} a - \frac{2}{17}$, $\frac{1}{17} a^{11} - \frac{7}{17} a^{7} + \frac{3}{17} a^{6} - \frac{4}{17} a^{5} - \frac{1}{17} a^{4} + \frac{5}{17} a^{3} + \frac{5}{17} a^{2} + \frac{6}{17} a + \frac{4}{17}$, $\frac{1}{34} a^{12} - \frac{1}{34} a^{10} - \frac{1}{34} a^{8} + \frac{6}{17} a^{7} + \frac{7}{17} a^{6} - \frac{15}{34} a^{5} - \frac{4}{17} a^{4} + \frac{15}{34} a^{3} - \frac{1}{17} a^{2} + \frac{1}{34} a - \frac{9}{34}$, $\frac{1}{34} a^{13} - \frac{1}{34} a^{11} - \frac{1}{34} a^{9} + \frac{2}{17} a^{7} + \frac{15}{34} a^{6} - \frac{3}{17} a^{5} - \frac{9}{34} a^{4} - \frac{2}{17} a^{3} - \frac{3}{34} a^{2} + \frac{1}{34} a - \frac{6}{17}$, $\frac{1}{12682} a^{14} + \frac{95}{12682} a^{13} + \frac{29}{12682} a^{12} + \frac{7}{12682} a^{11} + \frac{311}{12682} a^{10} + \frac{9}{12682} a^{9} - \frac{81}{6341} a^{8} + \frac{3233}{12682} a^{7} + \frac{5225}{12682} a^{6} - \frac{569}{12682} a^{5} + \frac{1345}{12682} a^{4} - \frac{5809}{12682} a^{3} + \frac{2878}{6341} a^{2} + \frac{319}{746} a - \frac{501}{6341}$, $\frac{1}{298082254075815377818801892414} a^{15} + \frac{4893201662470901107513902}{149041127037907688909400946207} a^{14} + \frac{1756078948751988272509100721}{149041127037907688909400946207} a^{13} + \frac{344669751492524820097946659}{149041127037907688909400946207} a^{12} + \frac{435554171594663003311786781}{149041127037907688909400946207} a^{11} - \frac{1523368726578203502654973298}{149041127037907688909400946207} a^{10} - \frac{1718085012416983177982189529}{298082254075815377818801892414} a^{9} + \frac{2769321030573388225906088367}{298082254075815377818801892414} a^{8} + \frac{4377496282629703705368123439}{149041127037907688909400946207} a^{7} - \frac{1082924794353625606717807892}{8767125119876922877023585071} a^{6} - \frac{31947720872626976427886327160}{149041127037907688909400946207} a^{5} + \frac{30290553934184048985040231548}{149041127037907688909400946207} a^{4} - \frac{32889726404888546581429757617}{298082254075815377818801892414} a^{3} + \frac{8282890128721839807228543099}{298082254075815377818801892414} a^{2} + \frac{56674866829101619216567608711}{298082254075815377818801892414} a - \frac{48999209129455937982049826520}{149041127037907688909400946207}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6003656187.52 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{221}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{13}, \sqrt{17})\), 8.8.116507435287321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $17$ | 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |