Normalized defining polynomial
\( x^{16} - 3 x^{15} + 24 x^{14} - 230 x^{13} + 1237 x^{12} + 2043 x^{11} + 279 x^{10} - 73306 x^{9} - 762393 x^{8} + 1865554 x^{7} + 4370455 x^{6} - 293238 x^{5} + 22835637 x^{4} - 116506574 x^{3} - 3454475 x^{2} + 105429551 x - 11550751 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(662966878170355779548558581239481=13^{14}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{146617447300162531986160830052766220366441163984991147179944514903} a^{15} + \frac{44483798010069848919670499981295559574116971691652394635595993024}{146617447300162531986160830052766220366441163984991147179944514903} a^{14} - \frac{16022725882399897025412442043771596209636524088299890477943188161}{146617447300162531986160830052766220366441163984991147179944514903} a^{13} + \frac{38041771118851265684447625215301768554795203044949853115513251661}{146617447300162531986160830052766220366441163984991147179944514903} a^{12} - \frac{63700430954239306469111635556469600938173849651868334713945524268}{146617447300162531986160830052766220366441163984991147179944514903} a^{11} - \frac{8559001332518025541637364522841718974557789484699902969824217677}{146617447300162531986160830052766220366441163984991147179944514903} a^{10} - \frac{69636434337425852268521235823629962534035150752140122290895242508}{146617447300162531986160830052766220366441163984991147179944514903} a^{9} - \frac{204404434821310559982262184427276602627986391321258817158473319}{146617447300162531986160830052766220366441163984991147179944514903} a^{8} - \frac{48218944000486580212690682666635226335546018238697569051490682428}{146617447300162531986160830052766220366441163984991147179944514903} a^{7} + \frac{31048420061844600113470286255883148081406823014551375980930369948}{146617447300162531986160830052766220366441163984991147179944514903} a^{6} + \frac{49793254725588333123525261785208776987851177780789528605407909655}{146617447300162531986160830052766220366441163984991147179944514903} a^{5} - \frac{61159554211852454390656595810536222112642034357120708056094972837}{146617447300162531986160830052766220366441163984991147179944514903} a^{4} - \frac{53075942757142671576456714051369090574007191484378874965511074049}{146617447300162531986160830052766220366441163984991147179944514903} a^{3} - \frac{7822834797312794917942845181126991050853619362933530143110468592}{146617447300162531986160830052766220366441163984991147179944514903} a^{2} + \frac{7266835662680166896612530146127282231230795960127619500687835073}{146617447300162531986160830052766220366441163984991147179944514903} a + \frac{30578067369331123047339172644266186843059005628153474355042992829}{146617447300162531986160830052766220366441163984991147179944514903}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4437980972.81 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{221}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{13}, \sqrt{17})\), 8.8.116507435287321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $17$ | 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |