Normalized defining polynomial
\( x^{16} - 4 x^{15} - 55 x^{14} + 142 x^{13} - 520 x^{12} - 1176 x^{11} + 39923 x^{10} + 32681 x^{9} + 230388 x^{8} + 68341 x^{7} - 5271253 x^{6} - 182955 x^{5} - 41026485 x^{4} - 88479221 x^{3} - 12814472 x^{2} - 292118775 x + 1640683769 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(662834267162184237456650608633249=17^{14}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{52} a^{13} - \frac{5}{52} a^{12} + \frac{1}{52} a^{11} + \frac{9}{52} a^{10} + \frac{3}{13} a^{9} + \frac{5}{52} a^{8} - \frac{1}{26} a^{7} + \frac{3}{52} a^{6} + \frac{9}{26} a^{5} + \frac{19}{52} a^{4} - \frac{19}{52} a^{3} - \frac{1}{26} a^{2} - \frac{1}{52} a + \frac{5}{13}$, $\frac{1}{208686396932} a^{14} + \frac{218269011}{208686396932} a^{13} - \frac{2723885679}{52171599233} a^{12} + \frac{300870397}{8026399882} a^{11} - \frac{31013908137}{208686396932} a^{10} + \frac{5715977030}{52171599233} a^{9} - \frac{7320764767}{104343198466} a^{8} - \frac{16171731143}{104343198466} a^{7} - \frac{23591772372}{52171599233} a^{6} - \frac{236197223}{4013199941} a^{5} - \frac{75850846885}{208686396932} a^{4} + \frac{7552601259}{16052799764} a^{3} + \frac{22285145859}{104343198466} a^{2} - \frac{18421535761}{104343198466} a - \frac{15766032319}{208686396932}$, $\frac{1}{20456561540634445734027386121644174247074368697959004} a^{15} - \frac{27496434131089416703926576618203934275095}{20456561540634445734027386121644174247074368697959004} a^{14} - \frac{80628526815641769924234683987373588230510321195373}{20456561540634445734027386121644174247074368697959004} a^{13} + \frac{170432722247861148656235045614529623412025629118616}{5114140385158611433506846530411043561768592174489751} a^{12} - \frac{323005984852329314464915019049107849223939348333513}{20456561540634445734027386121644174247074368697959004} a^{11} + \frac{765615102067381946351950804961062106709267893400197}{5114140385158611433506846530411043561768592174489751} a^{10} - \frac{972925619853062437109758763528843076540469316317507}{20456561540634445734027386121644174247074368697959004} a^{9} + \frac{1618662140536331242042492487356747267213268556807483}{20456561540634445734027386121644174247074368697959004} a^{8} + \frac{856288799048204109724473121884375680343806327790787}{20456561540634445734027386121644174247074368697959004} a^{7} + \frac{9082164768475487935936196904234313260318800976465467}{20456561540634445734027386121644174247074368697959004} a^{6} + \frac{377530861967055598575937899735159798305201158631067}{5114140385158611433506846530411043561768592174489751} a^{5} - \frac{4182828922533966748948786422725802883554730544940893}{10228280770317222867013693060822087123537184348979502} a^{4} + \frac{1080333127030506687585274259291634922097025325669787}{10228280770317222867013693060822087123537184348979502} a^{3} + \frac{7461924913430976616998055628953396379266941337348609}{20456561540634445734027386121644174247074368697959004} a^{2} - \frac{2837072605068695400042499913128178864196112910969511}{10228280770317222867013693060822087123537184348979502} a + \frac{9276104448429115556835846876600551083485742731680087}{20456561540634445734027386121644174247074368697959004}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16786016205.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.25745567912986193.1, 8.4.289276043966137.1, 8.4.2148243641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |