Properties

Label 16.8.66283426716...3249.3
Degree $16$
Signature $[8, 4]$
Discriminant $17^{14}\cdot 89^{8}$
Root discriminant $112.55$
Ramified primes $17, 89$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_2^3.C_4$ (as 16T36)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![104060401, 0, -113047482, 0, 34575031, 0, -3268060, 0, -25787, 0, 7188, 0, -113, 0, -2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^14 - 113*x^12 + 7188*x^10 - 25787*x^8 - 3268060*x^6 + 34575031*x^4 - 113047482*x^2 + 104060401)
 
gp: K = bnfinit(x^16 - 2*x^14 - 113*x^12 + 7188*x^10 - 25787*x^8 - 3268060*x^6 + 34575031*x^4 - 113047482*x^2 + 104060401, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{14} - 113 x^{12} + 7188 x^{10} - 25787 x^{8} - 3268060 x^{6} + 34575031 x^{4} - 113047482 x^{2} + 104060401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(662834267162184237456650608633249=17^{14}\cdot 89^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $112.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{808} a^{13} + \frac{99}{808} a^{11} + \frac{89}{808} a^{9} - \frac{1}{8} a^{8} + \frac{17}{808} a^{7} - \frac{1}{8} a^{6} + \frac{69}{808} a^{5} - \frac{1}{8} a^{4} - \frac{13}{101} a^{3} - \frac{1}{8} a^{2} + \frac{103}{404} a + \frac{3}{8}$, $\frac{1}{2867508474459598935849976} a^{14} + \frac{14690447205709415076869}{716877118614899733962494} a^{12} - \frac{1}{8} a^{11} + \frac{141360769901404039388455}{2867508474459598935849976} a^{10} - \frac{1}{8} a^{9} - \frac{30524128547442672795877}{358438559307449866981247} a^{8} - \frac{1}{8} a^{7} - \frac{55142587331110486204909}{716877118614899733962494} a^{6} - \frac{1}{8} a^{5} - \frac{58726694251561733832585}{2867508474459598935849976} a^{4} - \frac{1}{8} a^{3} - \frac{310892656323453928104759}{716877118614899733962494} a^{2} - \frac{1}{2} a - \frac{76241234597282134743}{281100722915361134776}$, $\frac{1}{289618355920419492520847576} a^{15} + \frac{14690447205709415076869}{72404588980104873130211894} a^{13} - \frac{3334485928470071716627619}{144809177960209746260423788} a^{11} - \frac{1}{8} a^{10} - \frac{9022012239781132020122929}{72404588980104873130211894} a^{9} - \frac{772019705946010220167403}{72404588980104873130211894} a^{7} + \frac{11411307203586834009567319}{289618355920419492520847576} a^{5} - \frac{12163138064961297507924154}{36202294490052436565105947} a^{3} - \frac{617890858311573407847}{14195586507225737306188} a - \frac{3}{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17177178889.5 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_4$ (as 16T36):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3.C_4$
Character table for $C_2^3.C_4$

Intermediate fields

\(\Q(\sqrt{17}) \), \(\Q(\sqrt{1513}) \), \(\Q(\sqrt{89}) \), 4.4.38915873.1, 4.4.4913.1, \(\Q(\sqrt{17}, \sqrt{89})\), 8.4.25745567912986193.1 x2, 8.4.3250292628833.1 x2, 8.8.1514445171352129.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
89Data not computed