Normalized defining polynomial
\( x^{16} - 2 x^{14} - 113 x^{12} + 7188 x^{10} - 25787 x^{8} - 3268060 x^{6} + 34575031 x^{4} - 113047482 x^{2} + 104060401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(662834267162184237456650608633249=17^{14}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{808} a^{13} + \frac{99}{808} a^{11} + \frac{89}{808} a^{9} - \frac{1}{8} a^{8} + \frac{17}{808} a^{7} - \frac{1}{8} a^{6} + \frac{69}{808} a^{5} - \frac{1}{8} a^{4} - \frac{13}{101} a^{3} - \frac{1}{8} a^{2} + \frac{103}{404} a + \frac{3}{8}$, $\frac{1}{2867508474459598935849976} a^{14} + \frac{14690447205709415076869}{716877118614899733962494} a^{12} - \frac{1}{8} a^{11} + \frac{141360769901404039388455}{2867508474459598935849976} a^{10} - \frac{1}{8} a^{9} - \frac{30524128547442672795877}{358438559307449866981247} a^{8} - \frac{1}{8} a^{7} - \frac{55142587331110486204909}{716877118614899733962494} a^{6} - \frac{1}{8} a^{5} - \frac{58726694251561733832585}{2867508474459598935849976} a^{4} - \frac{1}{8} a^{3} - \frac{310892656323453928104759}{716877118614899733962494} a^{2} - \frac{1}{2} a - \frac{76241234597282134743}{281100722915361134776}$, $\frac{1}{289618355920419492520847576} a^{15} + \frac{14690447205709415076869}{72404588980104873130211894} a^{13} - \frac{3334485928470071716627619}{144809177960209746260423788} a^{11} - \frac{1}{8} a^{10} - \frac{9022012239781132020122929}{72404588980104873130211894} a^{9} - \frac{772019705946010220167403}{72404588980104873130211894} a^{7} + \frac{11411307203586834009567319}{289618355920419492520847576} a^{5} - \frac{12163138064961297507924154}{36202294490052436565105947} a^{3} - \frac{617890858311573407847}{14195586507225737306188} a - \frac{3}{8}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17177178889.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{1513}) \), \(\Q(\sqrt{89}) \), 4.4.38915873.1, 4.4.4913.1, \(\Q(\sqrt{17}, \sqrt{89})\), 8.4.25745567912986193.1 x2, 8.4.3250292628833.1 x2, 8.8.1514445171352129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 89 | Data not computed | ||||||