Normalized defining polynomial
\( x^{16} - 8 x^{15} + 8 x^{14} + 36 x^{13} + 160 x^{12} - 528 x^{11} - 2268 x^{10} + 2904 x^{9} + 20920 x^{8} - 15616 x^{7} - 96624 x^{6} + 67856 x^{5} + 167864 x^{4} - 81408 x^{3} - 48816 x^{2} + 864 x + 1296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65790008098816000000000000=2^{32}\cdot 5^{12}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{24} a^{12} + \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{24} a^{13} + \frac{1}{12} a^{10} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{2952} a^{14} - \frac{7}{369} a^{13} + \frac{19}{1476} a^{12} - \frac{2}{123} a^{11} - \frac{35}{738} a^{10} - \frac{2}{123} a^{9} - \frac{7}{492} a^{8} + \frac{9}{41} a^{7} + \frac{74}{369} a^{6} - \frac{17}{369} a^{5} - \frac{28}{123} a^{4} + \frac{136}{369} a^{3} - \frac{155}{369} a^{2} + \frac{34}{123} a + \frac{15}{41}$, $\frac{1}{106777271793707973509087762712} a^{15} - \frac{999516481358793985727503}{53388635896853986754543881356} a^{14} - \frac{75110998031433395680805899}{3813473992632427625324562954} a^{13} - \frac{7049252405818947209995391}{4449052991404498896211990113} a^{12} + \frac{1055523059668114506562896938}{13347158974213496688635970339} a^{11} + \frac{669486393526201703491044163}{17796211965617995584847960452} a^{10} + \frac{693828597144018597086684905}{5932070655205998528282653484} a^{9} + \frac{14869261307248847712888155}{434053950380926721581657572} a^{8} + \frac{29916565896335415328157590}{325540462785695041186243179} a^{7} + \frac{2790073012589867761267312132}{13347158974213496688635970339} a^{6} - \frac{939873993340014732469770677}{4449052991404498896211990113} a^{5} + \frac{88276572257573123517738589}{1906736996316213812662281477} a^{4} - \frac{2982923204700957134461319387}{13347158974213496688635970339} a^{3} + \frac{50354159648003124315016199}{635578998772071270887427159} a^{2} + \frac{366836013167383942560818455}{1483017663801499632070663371} a - \frac{41310910029275566164390936}{494339221267166544023554457}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6569018.97425 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T210):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.4.178000.1, 4.4.712000.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.91136000000.1, 8.4.227840000.1, 8.8.8111104000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 89 | Data not computed | ||||||