Normalized defining polynomial
\( x^{16} - 6 x^{15} - 9 x^{14} + 118 x^{13} - 765 x^{12} + 1842 x^{11} + 2973 x^{10} - 33624 x^{9} + 93214 x^{8} - 97134 x^{7} - 91951 x^{6} + 457456 x^{5} - 744437 x^{4} + 738828 x^{3} - 401358 x^{2} + 76790 x + 1801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6513925684721600930241986953216=2^{20}\cdot 13^{6}\cdot 17^{12}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{78} a^{12} - \frac{35}{78} a^{11} + \frac{1}{3} a^{10} + \frac{4}{13} a^{9} + \frac{1}{39} a^{8} - \frac{23}{78} a^{7} + \frac{4}{39} a^{6} - \frac{16}{39} a^{5} + \frac{1}{39} a^{4} + \frac{5}{78} a^{3} - \frac{16}{39} a^{2} - \frac{4}{13} a - \frac{31}{78}$, $\frac{1}{78} a^{13} - \frac{29}{78} a^{11} - \frac{1}{39} a^{10} - \frac{8}{39} a^{9} - \frac{31}{78} a^{8} - \frac{17}{78} a^{7} + \frac{7}{39} a^{6} - \frac{1}{3} a^{5} - \frac{1}{26} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{7}{78}$, $\frac{1}{1014} a^{14} - \frac{1}{1014} a^{13} - \frac{2}{507} a^{12} + \frac{44}{507} a^{11} + \frac{80}{169} a^{10} - \frac{3}{26} a^{9} - \frac{124}{507} a^{8} + \frac{235}{507} a^{7} + \frac{236}{507} a^{6} + \frac{1}{338} a^{5} - \frac{175}{507} a^{4} - \frac{113}{507} a^{3} - \frac{59}{1014} a^{2} + \frac{139}{507} a + \frac{155}{507}$, $\frac{1}{4027481041858500629959005830699919678} a^{15} - \frac{637043939412681464570268589895572}{2013740520929250314979502915349959839} a^{14} - \frac{10932020321613426259489964440344449}{4027481041858500629959005830699919678} a^{13} + \frac{9183522221125738614683599471799537}{2013740520929250314979502915349959839} a^{12} - \frac{294266574360521958189692678261977973}{2013740520929250314979502915349959839} a^{11} - \frac{148369175349686821561460839555964089}{4027481041858500629959005830699919678} a^{10} - \frac{616856833336824760738556909543985225}{1342493680619500209986335276899973226} a^{9} + \frac{654748400730898950867680320589402444}{2013740520929250314979502915349959839} a^{8} + \frac{2382098169172957699644766028513971}{154903116994557716536884839642304603} a^{7} + \frac{27762768763974136425177134166133415}{211972686413605296313631885826311562} a^{6} + \frac{204245492518010084358896729767586683}{4027481041858500629959005830699919678} a^{5} + \frac{909201487053650583413959095570029428}{2013740520929250314979502915349959839} a^{4} - \frac{663975909790509757299096021567677215}{4027481041858500629959005830699919678} a^{3} - \frac{2688100663935039153899794510984679}{7230666143372532549298035602692854} a^{2} + \frac{398865651388386422129418687676065776}{2013740520929250314979502915349959839} a + \frac{789069903249211472561773152584845484}{2013740520929250314979502915349959839}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2178288210.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n781 are not computed |
| Character table for t16n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.4.510952.2, 4.4.30056.2, 8.8.261071946304.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.20.7 | $x^{8} + 72 x^{4} + 144$ | $4$ | $2$ | $20$ | $Q_8:C_2$ | $[2, 3, 7/2]^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 47 | Data not computed | ||||||