Properties

Label 16.8.64717468117...6144.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{56}\cdot 3^{12}\cdot 13^{2}$
Root discriminant $35.54$
Ramified primes $2, 3, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^3.C_2^4.C_2$ (as 16T608)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-482, 176, 2304, -432, -4516, -240, 4616, 1616, -1734, -824, 296, 96, -64, 24, 12, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 12*x^14 + 24*x^13 - 64*x^12 + 96*x^11 + 296*x^10 - 824*x^9 - 1734*x^8 + 1616*x^7 + 4616*x^6 - 240*x^5 - 4516*x^4 - 432*x^3 + 2304*x^2 + 176*x - 482)
 
gp: K = bnfinit(x^16 - 8*x^15 + 12*x^14 + 24*x^13 - 64*x^12 + 96*x^11 + 296*x^10 - 824*x^9 - 1734*x^8 + 1616*x^7 + 4616*x^6 - 240*x^5 - 4516*x^4 - 432*x^3 + 2304*x^2 + 176*x - 482, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 12 x^{14} + 24 x^{13} - 64 x^{12} + 96 x^{11} + 296 x^{10} - 824 x^{9} - 1734 x^{8} + 1616 x^{7} + 4616 x^{6} - 240 x^{5} - 4516 x^{4} - 432 x^{3} + 2304 x^{2} + 176 x - 482 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6471746811795667779846144=2^{56}\cdot 3^{12}\cdot 13^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{65} a^{14} + \frac{28}{65} a^{13} + \frac{27}{65} a^{12} - \frac{28}{65} a^{11} + \frac{2}{65} a^{10} + \frac{22}{65} a^{9} + \frac{12}{65} a^{8} - \frac{8}{65} a^{7} - \frac{28}{65} a^{6} - \frac{28}{65} a^{5} + \frac{17}{65} a^{4} + \frac{31}{65} a^{3} - \frac{1}{65} a^{2} + \frac{14}{65} a + \frac{31}{65}$, $\frac{1}{92489729260027890989705} a^{15} - \frac{640781140455846725622}{92489729260027890989705} a^{14} + \frac{28548302521523407184427}{92489729260027890989705} a^{13} - \frac{1249135697641909498882}{3189301008966478999645} a^{12} + \frac{672969495774950674746}{1380443720298923746115} a^{11} + \frac{12594419219534954533397}{92489729260027890989705} a^{10} - \frac{15791802989073232298998}{92489729260027890989705} a^{9} - \frac{33559231659670845927778}{92489729260027890989705} a^{8} + \frac{17524262693882175211002}{92489729260027890989705} a^{7} + \frac{10642397332597102540212}{92489729260027890989705} a^{6} - \frac{1148390153074099780547}{3189301008966478999645} a^{5} + \frac{14382748291941611040621}{92489729260027890989705} a^{4} + \frac{431797677177163495821}{3189301008966478999645} a^{3} - \frac{42890843479862453143571}{92489729260027890989705} a^{2} + \frac{3944235612852371561766}{92489729260027890989705} a + \frac{6680987625586508863249}{18497945852005578197941}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4338202.65384 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_2^4.C_2$ (as 16T608):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$
Character table for $C_2^3.C_2^4.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), 4.4.27648.1 x2, 4.4.13824.1 x2, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.3057647616.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$