Normalized defining polynomial
\( x^{16} - x^{15} - 62 x^{14} - 803 x^{13} - 6364 x^{12} + 28486 x^{11} + 560949 x^{10} + 4108102 x^{9} + 12524048 x^{8} - 80124311 x^{7} - 1020941616 x^{6} - 5169819990 x^{5} - 12573808799 x^{4} - 17661455410 x^{3} - 15689345750 x^{2} - 6979244050 x - 406670525 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(645576055826149774217152338862890625=5^{8}\cdot 13^{2}\cdot 97^{4}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $173.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 97, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{10} + \frac{1}{10} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{3}{10} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{2}{5} a^{11} + \frac{1}{10} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{3}{10} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a$, $\frac{1}{170} a^{14} - \frac{3}{170} a^{13} + \frac{1}{34} a^{12} - \frac{61}{170} a^{11} + \frac{47}{170} a^{10} + \frac{21}{170} a^{9} - \frac{13}{34} a^{8} - \frac{33}{170} a^{7} + \frac{23}{170} a^{6} - \frac{83}{170} a^{5} - \frac{3}{34} a^{4} + \frac{29}{170} a^{3} + \frac{69}{170} a^{2} - \frac{13}{34} a + \frac{7}{34}$, $\frac{1}{461079777295604283404463545279874347894429572050693855880652544348287904650} a^{15} + \frac{4125395724842561749516349631385779993890944884424087727571360300024571}{27122339840917899023791973251757314582025268944158462110626620255781641450} a^{14} + \frac{6376645276131651310390982026847007775224855329371145208413000626378804029}{461079777295604283404463545279874347894429572050693855880652544348287904650} a^{13} - \frac{22459832922598060312060671661117716651285341426472972195132006996958293591}{461079777295604283404463545279874347894429572050693855880652544348287904650} a^{12} + \frac{2622386982493310628790075468230008770654987805209899655958211484161532979}{27122339840917899023791973251757314582025268944158462110626620255781641450} a^{11} - \frac{831707815554212127311100807054093675427077059461166056326101216357289983}{8383268678101896061899337186906806325353264946376251925102773533605234630} a^{10} - \frac{168380025275787828573431834208281935363670748107677572663360834967337574651}{461079777295604283404463545279874347894429572050693855880652544348287904650} a^{9} + \frac{109030926295483558654069221671482648734544198154540455706671183962331496599}{461079777295604283404463545279874347894429572050693855880652544348287904650} a^{8} - \frac{16238244151850401122825794369651987632513028654732103029127326870839773289}{92215955459120856680892709055974869578885914410138771176130508869657580930} a^{7} + \frac{184662147998767565074042196168622514782361589254735570743463876802100830159}{461079777295604283404463545279874347894429572050693855880652544348287904650} a^{6} + \frac{118603340578052998113148943768235441046030007501937677944224763853671022821}{461079777295604283404463545279874347894429572050693855880652544348287904650} a^{5} - \frac{175912462783554470710579639898239216620057677311379250244683116536956803557}{461079777295604283404463545279874347894429572050693855880652544348287904650} a^{4} + \frac{14543237849167150618859121256546743867650097820448843938115430320663987549}{92215955459120856680892709055974869578885914410138771176130508869657580930} a^{3} - \frac{20844865568419027584078023378033003783145701004730102047319612931581170837}{92215955459120856680892709055974869578885914410138771176130508869657580930} a^{2} + \frac{4957308989142382940631708126470825837379226031721384747269376530169527783}{18443191091824171336178541811194973915777182882027754235226101773931516186} a + \frac{9753742453936669403008433583648498773042861300948217613459988290076891}{20538074712499077211780113375495516609996862897581018079316371685892557}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246829296389 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n860 are not computed |
| Character table for t16n860 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{101}) \), \(\Q(\sqrt{505}) \), 4.4.2525.1 x2, 4.4.51005.1 x2, \(\Q(\sqrt{5}, \sqrt{101})\), 8.8.65037750625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 101 | Data not computed | ||||||