Normalized defining polynomial
\( x^{16} - 3 x^{15} + 554 x^{14} - 7595 x^{13} - 557765 x^{12} - 21555312 x^{11} - 964537235 x^{10} - 17203793113 x^{9} - 201693621442 x^{8} + 2693259145663 x^{7} + 174686723625779 x^{6} + 3073967109999834 x^{5} + 36797324745255904 x^{4} + 194886203868804103 x^{3} - 1617614637177574531 x^{2} - 13771872983608380722 x + 22791644861288076339 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64479545841814254728122854912988442937092177855107129=61^{14}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1997.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{5} + \frac{4}{9} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{27} a^{10} + \frac{1}{27} a^{9} - \frac{2}{27} a^{8} - \frac{1}{9} a^{7} + \frac{4}{27} a^{6} + \frac{2}{27} a^{5} + \frac{2}{9} a^{4} - \frac{8}{27} a^{3} - \frac{4}{9} a^{2} - \frac{10}{27} a - \frac{2}{9}$, $\frac{1}{27} a^{11} - \frac{4}{27} a^{8} - \frac{2}{27} a^{7} - \frac{2}{27} a^{6} - \frac{2}{27} a^{5} - \frac{5}{27} a^{4} - \frac{4}{27} a^{3} + \frac{5}{27} a^{2} - \frac{11}{27} a - \frac{1}{9}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{11} - \frac{1}{81} a^{9} + \frac{5}{81} a^{7} - \frac{4}{81} a^{6} - \frac{4}{81} a^{5} - \frac{2}{9} a^{4} + \frac{28}{81} a^{3} + \frac{11}{27} a^{2} - \frac{2}{81} a - \frac{13}{27}$, $\frac{1}{243} a^{13} + \frac{2}{243} a^{11} - \frac{1}{243} a^{10} - \frac{8}{243} a^{9} + \frac{2}{243} a^{8} + \frac{4}{81} a^{7} - \frac{2}{81} a^{6} - \frac{2}{243} a^{5} + \frac{4}{243} a^{4} + \frac{74}{243} a^{3} - \frac{29}{243} a^{2} - \frac{25}{243} a - \frac{8}{81}$, $\frac{1}{588303} a^{14} + \frac{581}{588303} a^{13} + \frac{2441}{588303} a^{12} - \frac{220}{65367} a^{11} - \frac{3451}{588303} a^{10} + \frac{18133}{588303} a^{9} - \frac{90392}{588303} a^{8} + \frac{2911}{21789} a^{7} - \frac{34754}{588303} a^{6} - \frac{14930}{196101} a^{5} - \frac{173822}{588303} a^{4} + \frac{193004}{588303} a^{3} - \frac{18422}{588303} a^{2} + \frac{285763}{588303} a - \frac{65443}{196101}$, $\frac{1}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{15} + \frac{33387924870272204797711882943729944695554971351322717150173504847797177841492639822654942104816349858740377903589615930}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{14} + \frac{6202597419561474286101321455482197966411583241534185265792367292128800629667917606780778517799772339837176998757373261744}{5545766244205173568755577849703567643120377440579966627083209274815631725231847685396447768309130996684861990887600548754101} a^{13} - \frac{148947112607650869922705604667912292776565028963035451582074622824733779547230741483107064194716483237726038057585477997825}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{12} + \frac{96623366320109786644005572679255072965626857524681187367261056071066428092647294860603033959705720587030348351777519891153}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{11} - \frac{802026010290222404955878626583581908377304365411744809578623374504855704197940943609605918785021761846278620664590079482269}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{10} + \frac{552384814493772060621648336164904246289826292367773978201494067255036609294240875567747747458402593902859410450272908839752}{16637298732615520706266733549110702929361132321739899881249627824446895175695543056189343304927392990054585972662801646262303} a^{9} + \frac{4950694160211278850327580257876744726032987170051851462765120032847770609687860365625383133494969353200316052213550476294362}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{8} + \frac{7641738624330029660333073821116037624843005600939226631593706056734569544320327998070677221937166738336394056342778647530581}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{7} + \frac{7056447792332701493002239670790768054516655237564837946666003865914656531920168602843251611005017105729944956952280502087955}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{6} + \frac{7731154508566821924801918941282427099259525913674500820193603974686216241564717441743822653589835264909989785933633841800800}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{5} + \frac{91014585539911333050759430655809750039473071930661835103003931837008932024224924584615827836716796039490182062058923215267}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{4} + \frac{1927573608656166325934332951359092924892056835709002880617021058553108161318191213252698012836316593002622227685845485615084}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a^{3} + \frac{376610602999890874125758952346490824956472237380463356598792090320905178445825603418707235908992184974140969564711359352384}{5545766244205173568755577849703567643120377440579966627083209274815631725231847685396447768309130996684861990887600548754101} a^{2} - \frac{8598853141894164186114771243178999628533549085408190376096218074436181331498355107727135899502553613127650327986675949636962}{49911896197846562118800200647332108788083396965219699643748883473340685527086629168568029914782178970163757917988404938786909} a - \frac{4385723710684867723259830239700301031778466104766923133821258230461357090613247462879183605586982628007395415059746825471180}{16637298732615520706266733549110702929361132321739899881249627824446895175695543056189343304927392990054585972662801646262303}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1709879645410000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{5917}) \), \(\Q(\sqrt{61}, \sqrt{97})\), 8.8.42915029526174817225369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $97$ | 97.8.7.2 | $x^{8} - 2425$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.4 | $x^{8} - 1515625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |