Normalized defining polynomial
\( x^{16} - 4 x^{15} - 23 x^{14} + 98 x^{13} - 840713 x^{12} - 3901834 x^{11} - 7269097 x^{10} - 72342590 x^{9} + 15836693522 x^{8} + 100014470272 x^{7} + 588540102377 x^{6} + 3620444460103 x^{5} - 77387700251526 x^{4} - 528998767606638 x^{3} + 72859130170740 x^{2} + 3402687025817982 x + 8634653323364421 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64479545841814254728122854912988442937092177855107129=61^{14}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1997.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{7} - \frac{2}{27} a^{5} + \frac{1}{9} a^{4} + \frac{1}{27} a^{3} - \frac{1}{9} a^{2}$, $\frac{1}{1647} a^{8} - \frac{2}{1647} a^{7} - \frac{44}{1647} a^{6} + \frac{205}{1647} a^{5} + \frac{16}{1647} a^{4} - \frac{113}{1647} a^{3} - \frac{28}{61} a^{2} - \frac{55}{183} a + \frac{19}{61}$, $\frac{1}{4941} a^{9} - \frac{16}{1647} a^{7} + \frac{13}{549} a^{6} - \frac{41}{1647} a^{5} + \frac{52}{549} a^{4} - \frac{433}{4941} a^{3} - \frac{101}{549} a^{2} + \frac{130}{549} a - \frac{28}{61}$, $\frac{1}{4941} a^{10} + \frac{7}{1647} a^{7} - \frac{13}{1647} a^{6} + \frac{142}{1647} a^{5} - \frac{763}{4941} a^{4} + \frac{85}{1647} a^{3} - \frac{181}{549} a^{2} + \frac{73}{183} a - \frac{1}{61}$, $\frac{1}{4941} a^{11} + \frac{1}{1647} a^{7} + \frac{28}{549} a^{6} - \frac{127}{4941} a^{5} + \frac{52}{549} a^{4} + \frac{248}{1647} a^{3} - \frac{152}{549} a^{2} + \frac{16}{183} a - \frac{11}{61}$, $\frac{1}{44469} a^{12} + \frac{1}{14823} a^{11} - \frac{4}{44469} a^{10} + \frac{1}{14823} a^{9} - \frac{1}{14823} a^{8} + \frac{22}{1647} a^{7} + \frac{302}{44469} a^{6} + \frac{1307}{14823} a^{5} + \frac{5410}{44469} a^{4} - \frac{625}{14823} a^{3} - \frac{1984}{4941} a^{2} - \frac{98}{1647} a - \frac{91}{183}$, $\frac{1}{133407} a^{13} - \frac{4}{133407} a^{11} - \frac{4}{44469} a^{10} - \frac{4}{44469} a^{9} + \frac{4}{14823} a^{8} + \frac{2408}{133407} a^{7} + \frac{731}{14823} a^{6} - \frac{8414}{133407} a^{5} + \frac{4153}{44469} a^{4} - \frac{161}{4941} a^{3} - \frac{463}{4941} a^{2} - \frac{430}{1647} a - \frac{11}{183}$, $\frac{1}{8009776125106766991} a^{14} - \frac{6868604904011}{2669925375035588997} a^{13} + \frac{80131114523636}{8009776125106766991} a^{12} - \frac{3554772502307}{2669925375035588997} a^{11} + \frac{178300700087407}{2669925375035588997} a^{10} - \frac{37040905165706}{889975125011862999} a^{9} + \frac{1935717540443600}{8009776125106766991} a^{8} + \frac{49335130770669263}{2669925375035588997} a^{7} - \frac{126693904358908010}{8009776125106766991} a^{6} - \frac{233630026583449039}{2669925375035588997} a^{5} - \frac{372413878800458657}{2669925375035588997} a^{4} - \frac{108510904995611029}{889975125011862999} a^{3} - \frac{7442141362060402}{296658375003954333} a^{2} + \frac{9202942349687527}{98886125001318111} a - \frac{769003005790396}{10987347222368679}$, $\frac{1}{302412507660331677356422384005350490064878434795726834892490710628066464921} a^{15} - \frac{1618786305009152476867131035706224002905608998319341322}{33601389740036853039602487111705610007208714977302981654721190069785162769} a^{14} + \frac{942615906542234796150681656996810529109194419277453595138858254910312}{302412507660331677356422384005350490064878434795726834892490710628066464921} a^{13} - \frac{972541705529213845760956507360629665799731728267105085637773371353589}{100804169220110559118807461335116830021626144931908944964163570209355488307} a^{12} + \frac{27296780394330196418998730007778364254687363400243409646371821461946677}{302412507660331677356422384005350490064878434795726834892490710628066464921} a^{11} - \frac{7036705600706834027614214304601085587084923160227363226106136722382917}{100804169220110559118807461335116830021626144931908944964163570209355488307} a^{10} - \frac{28894693848645980221780858277548691341383351476461567707779106448590019}{302412507660331677356422384005350490064878434795726834892490710628066464921} a^{9} - \frac{31169581018082885403366033920982535179004152712324611744600450221084}{102756543547513312047714027864543149869139801153831748179575504800566247} a^{8} + \frac{3484755058558188394840875841623149561255191020798292370085805761900332822}{302412507660331677356422384005350490064878434795726834892490710628066464921} a^{7} - \frac{82356875670887570407124922786171617178619952609699793783676705372368131}{1652527364264107526537827235001915246256166310359163032199402790317303087} a^{6} + \frac{24302514867481946828929651465386007177135809030859375906183640543527289066}{302412507660331677356422384005350490064878434795726834892490710628066464921} a^{5} + \frac{15701432041806920486481250421060744725058601987836120623634311854185296358}{100804169220110559118807461335116830021626144931908944964163570209355488307} a^{4} - \frac{377545941232389445277359140403556949482115592506940485920489295615323}{8662384568197177891106596316500543956485876508714354641588344952251911} a^{3} - \frac{2024480923829002764071844542450543377405410617926186491615379288553248004}{11200463246678951013200829037235203335736238325767660551573730023261720923} a^{2} - \frac{348027095350829347032572344266791576912784411124313976884186727577210112}{3733487748892983671066943012411734445245412775255886850524576674420573641} a - \frac{183297669189837209442484455433939406644998176342317925015067445162654162}{414831972099220407896327001379081605027268086139542983391619630491174849}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28026804113300000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{5917}) \), \(\Q(\sqrt{61}, \sqrt{97})\), 8.8.42915029526174817225369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $97$ | 97.8.7.2 | $x^{8} - 2425$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.2 | $x^{8} - 2425$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |