Normalized defining polynomial
\( x^{16} - 4 x^{15} - 41 x^{14} + 161 x^{13} - 57670 x^{12} - 252809 x^{11} - 2417749 x^{10} - 26801036 x^{9} + 498030477 x^{8} + 2903909665 x^{7} + 37856782679 x^{6} + 250305707770 x^{5} - 1689580081024 x^{4} - 14946713792227 x^{3} - 23777866905041 x^{2} + 23287671874118 x + 59045036290459 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64479545841814254728122854912988442937092177855107129=61^{14}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1997.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{2619} a^{8} + \frac{95}{2619} a^{7} + \frac{317}{2619} a^{6} - \frac{304}{2619} a^{5} + \frac{64}{873} a^{4} + \frac{175}{2619} a^{3} - \frac{713}{2619} a^{2} + \frac{529}{2619} a + \frac{617}{2619}$, $\frac{1}{2619} a^{9} + \frac{22}{2619} a^{7} + \frac{136}{2619} a^{6} + \frac{263}{2619} a^{5} + \frac{268}{2619} a^{4} + \frac{122}{2619} a^{3} + \frac{1043}{2619} a^{2} + \frac{41}{873} a - \frac{997}{2619}$, $\frac{1}{7857} a^{10} - \frac{1}{7857} a^{9} + \frac{1}{7857} a^{8} - \frac{5}{291} a^{7} + \frac{454}{7857} a^{6} + \frac{278}{7857} a^{5} - \frac{686}{7857} a^{4} + \frac{373}{873} a^{3} - \frac{788}{7857} a^{2} + \frac{1739}{7857} a + \frac{262}{7857}$, $\frac{1}{70713} a^{11} - \frac{1}{23571} a^{10} - \frac{4}{23571} a^{9} - \frac{2}{70713} a^{8} + \frac{124}{70713} a^{7} + \frac{3772}{23571} a^{6} - \frac{2314}{23571} a^{5} + \frac{439}{70713} a^{4} - \frac{27611}{70713} a^{3} - \frac{1007}{7857} a^{2} + \frac{6404}{23571} a - \frac{33224}{70713}$, $\frac{1}{424278} a^{12} - \frac{1}{212139} a^{11} - \frac{5}{141426} a^{10} + \frac{20}{212139} a^{9} + \frac{41}{424278} a^{8} - \frac{9319}{212139} a^{7} - \frac{695}{7857} a^{6} - \frac{14819}{424278} a^{5} + \frac{9445}{212139} a^{4} - \frac{91403}{424278} a^{3} + \frac{12847}{70713} a^{2} + \frac{138349}{424278} a - \frac{42755}{424278}$, $\frac{1}{3818502} a^{13} - \frac{2}{1909251} a^{12} - \frac{11}{3818502} a^{11} + \frac{35}{1909251} a^{10} - \frac{175}{1272834} a^{9} - \frac{14}{212139} a^{8} + \frac{93914}{1909251} a^{7} - \frac{374243}{3818502} a^{6} + \frac{29399}{212139} a^{5} + \frac{199777}{1272834} a^{4} + \frac{584840}{1909251} a^{3} + \frac{1017907}{3818502} a^{2} - \frac{650905}{3818502} a + \frac{537503}{1909251}$, $\frac{1}{1666466824338} a^{14} - \frac{42295}{555488941446} a^{13} + \frac{378079}{555488941446} a^{12} - \frac{8233897}{1666466824338} a^{11} + \frac{57691867}{1666466824338} a^{10} + \frac{86461103}{555488941446} a^{9} - \frac{81828208}{833233412169} a^{8} + \frac{26573036483}{1666466824338} a^{7} + \frac{181346367811}{1666466824338} a^{6} - \frac{23753408339}{555488941446} a^{5} + \frac{22507595791}{1666466824338} a^{4} - \frac{761897687101}{1666466824338} a^{3} + \frac{32294032451}{92581490241} a^{2} + \frac{21972093271}{555488941446} a + \frac{246069198401}{833233412169}$, $\frac{1}{658393180148743101792719622401415733062389738835977214546} a^{15} + \frac{2119534113813978678244710199631867093354660}{329196590074371550896359811200707866531194869417988607273} a^{14} + \frac{3927654264197783613005474367422336490037838600369}{73154797794304789088079958044601748118043304315108579394} a^{13} + \frac{300569789216426054651207971037645178596731537671553}{329196590074371550896359811200707866531194869417988607273} a^{12} + \frac{617637498109506974931518201138614167767872398328765}{219464393382914367264239874133805244354129912945325738182} a^{11} + \frac{10520483291125847504590163536099064729621259796338332}{329196590074371550896359811200707866531194869417988607273} a^{10} + \frac{38104847551567552839280952058386118447030396290778203}{329196590074371550896359811200707866531194869417988607273} a^{9} - \frac{18281626355937244295224983520882567718550585359187529}{219464393382914367264239874133805244354129912945325738182} a^{8} - \frac{2024484956648795068245719040954955525483849552713315005}{36577398897152394544039979022300874059021652157554289697} a^{7} - \frac{105242118086638153439724466055554391787486332841164617601}{658393180148743101792719622401415733062389738835977214546} a^{6} + \frac{44463372685252348520081551283653905582627572470721874371}{329196590074371550896359811200707866531194869417988607273} a^{5} - \frac{541320880870046705566656457804027692937704661537099225}{219464393382914367264239874133805244354129912945325738182} a^{4} + \frac{92062082733597027376742345667248776474089091304068619921}{658393180148743101792719622401415733062389738835977214546} a^{3} + \frac{46691360532601707854191716631029301603269042830925293078}{109732196691457183632119937066902622177064956472662869091} a^{2} - \frac{10554520672899217730578841642682936580409534367232976527}{329196590074371550896359811200707866531194869417988607273} a + \frac{31980197612870948423387952935799829887974742730851082964}{329196590074371550896359811200707866531194869417988607273}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1718626291000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{5917}) \), \(\Q(\sqrt{61}, \sqrt{97})\), 8.8.42915029526174817225369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $97$ | 97.8.7.4 | $x^{8} - 1515625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.2 | $x^{8} - 2425$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |