Normalized defining polynomial
\( x^{16} - 4 x^{15} - 23 x^{14} + 98 x^{13} - 1000472 x^{12} - 4647376 x^{11} + 2357862 x^{10} + 18163842 x^{9} + 10642508325 x^{8} - 19389915190 x^{7} - 130866147686 x^{6} + 878429017229 x^{5} - 2180629500814 x^{4} - 16295183935748 x^{3} - 13035184353877 x^{2} + 16445814982743 x + 15827972949927 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64479545841814254728122854912988442937092177855107129=61^{14}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1997.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{183} a^{8} - \frac{2}{183} a^{7} + \frac{17}{183} a^{6} + \frac{22}{183} a^{5} - \frac{15}{61} a^{4} + \frac{3}{61} a^{3} - \frac{85}{183} a^{2} + \frac{18}{61} a - \frac{12}{61}$, $\frac{1}{183} a^{9} + \frac{13}{183} a^{7} - \frac{5}{183} a^{6} - \frac{1}{183} a^{5} - \frac{20}{183} a^{4} - \frac{2}{61} a^{3} + \frac{2}{61} a^{2} - \frac{50}{183} a - \frac{24}{61}$, $\frac{1}{183} a^{10} + \frac{7}{61} a^{7} + \frac{22}{183} a^{6} + \frac{20}{61} a^{5} - \frac{31}{183} a^{4} + \frac{11}{183} a^{3} + \frac{6}{61} a^{2} + \frac{80}{183} a - \frac{27}{61}$, $\frac{1}{1647} a^{11} + \frac{1}{549} a^{10} + \frac{1}{1647} a^{9} + \frac{4}{1647} a^{8} + \frac{44}{549} a^{7} - \frac{56}{549} a^{6} + \frac{140}{1647} a^{5} - \frac{206}{549} a^{4} + \frac{208}{549} a^{3} - \frac{428}{1647} a^{2} + \frac{472}{1647} a - \frac{206}{549}$, $\frac{1}{1647} a^{12} + \frac{1}{1647} a^{10} + \frac{1}{1647} a^{9} + \frac{1}{549} a^{8} - \frac{47}{549} a^{7} - \frac{49}{1647} a^{6} + \frac{74}{549} a^{5} - \frac{74}{549} a^{4} + \frac{589}{1647} a^{3} - \frac{215}{1647} a^{2} - \frac{55}{183} a + \frac{44}{183}$, $\frac{1}{1647} a^{13} - \frac{2}{1647} a^{10} + \frac{2}{1647} a^{9} - \frac{1}{1647} a^{8} + \frac{80}{1647} a^{7} + \frac{31}{549} a^{6} + \frac{10}{27} a^{5} + \frac{217}{1647} a^{4} + \frac{457}{1647} a^{3} - \frac{778}{1647} a^{2} + \frac{563}{1647} a + \frac{125}{549}$, $\frac{1}{11134682771850063} a^{14} - \frac{2951864156893}{11134682771850063} a^{13} + \frac{81171231637}{412395658216669} a^{12} - \frac{76604471168}{3711560923950021} a^{11} - \frac{23413051809173}{11134682771850063} a^{10} - \frac{16494438041356}{11134682771850063} a^{9} - \frac{9869117880658}{11134682771850063} a^{8} - \frac{147724845233426}{11134682771850063} a^{7} - \frac{1443302526718637}{11134682771850063} a^{6} + \frac{4902991115685334}{11134682771850063} a^{5} + \frac{5352058840408}{20281753682787} a^{4} - \frac{1028702866490639}{11134682771850063} a^{3} - \frac{3921381228828973}{11134682771850063} a^{2} - \frac{1564656093974995}{3711560923950021} a + \frac{100590744450973}{412395658216669}$, $\frac{1}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a^{15} - \frac{7384699550706936079094630182488688055568710850220077277860266}{199021210340438956376908680034494489631756547729758772957294718361862986971211} a^{14} - \frac{1464512172535864089034712593930956628836791926971789453847770674223771693386}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a^{13} + \frac{501743843261195679809786383920889077880068513846668431541748099864404805692}{1791190893063950607392178120310450406685808929567828956615652465256766882740899} a^{12} + \frac{576946662893820603584158213778574875325892553755140506562304060759197175534}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a^{11} - \frac{4617450475475626330435149500977331241803720430931116627207238498973544924685}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a^{10} - \frac{602859892999159189897008580057278764837877347596658363384226649213440089437}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a^{9} + \frac{12720018652996597686500001107545718187390800473307238834153490463291758776049}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a^{8} - \frac{32018997126555296683580030159587576753843365858115855551608524357207338119423}{1791190893063950607392178120310450406685808929567828956615652465256766882740899} a^{7} + \frac{33078364321307410902096370756016546211029611830541365915815983881860333582981}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a^{6} - \frac{52683923696400396679259342793100704046129215739249321013896061909846078153793}{199021210340438956376908680034494489631756547729758772957294718361862986971211} a^{5} - \frac{200777028183297045071128990944484759745624103482700630673968193106501800712576}{1791190893063950607392178120310450406685808929567828956615652465256766882740899} a^{4} - \frac{656211647316963618745575744687658280767954226525202383064902623552317159280006}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a^{3} + \frac{15749611234495656256062297074544353575788574044833053093694712042574812502399}{199021210340438956376908680034494489631756547729758772957294718361862986971211} a^{2} + \frac{2243237773148005026390166110512365220765317579261639343249138901510148405674544}{5373572679191851822176534360931351220057426788703486869846957395770300648222697} a + \frac{185867475955417909749272701459038636860628243179573004161865495895861392907678}{1791190893063950607392178120310450406685808929567828956615652465256766882740899}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119686659626000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{97}) \), \(\Q(\sqrt{5917}) \), \(\Q(\sqrt{61}, \sqrt{97})\), 8.8.42915029526174817225369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $97$ | 97.8.7.4 | $x^{8} - 1515625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.4 | $x^{8} - 1515625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |