Properties

Label 16.8.64179465342...8125.1
Degree $16$
Signature $[8, 4]$
Discriminant $5^{10}\cdot 29^{5}\cdot 179^{2}$
Root discriminant $14.98$
Ramified primes $5, 29, 179$
Class number $1$
Class group Trivial
Galois group 16T1702

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -7, 36, -48, 13, 46, -67, 14, 24, 14, -39, 12, 13, -8, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 8*x^14 + 13*x^13 + 12*x^12 - 39*x^11 + 14*x^10 + 24*x^9 + 14*x^8 - 67*x^7 + 46*x^6 + 13*x^5 - 48*x^4 + 36*x^3 - 7*x^2 - 3*x + 1)
 
gp: K = bnfinit(x^16 - x^15 - 8*x^14 + 13*x^13 + 12*x^12 - 39*x^11 + 14*x^10 + 24*x^9 + 14*x^8 - 67*x^7 + 46*x^6 + 13*x^5 - 48*x^4 + 36*x^3 - 7*x^2 - 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 8 x^{14} + 13 x^{13} + 12 x^{12} - 39 x^{11} + 14 x^{10} + 24 x^{9} + 14 x^{8} - 67 x^{7} + 46 x^{6} + 13 x^{5} - 48 x^{4} + 36 x^{3} - 7 x^{2} - 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6417946534267578125=5^{10}\cdot 29^{5}\cdot 179^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.98$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 179$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14} + \frac{13}{29} a^{13} + \frac{6}{29} a^{12} + \frac{1}{29} a^{11} + \frac{4}{29} a^{10} - \frac{6}{29} a^{9} + \frac{12}{29} a^{8} + \frac{11}{29} a^{7} + \frac{8}{29} a^{6} - \frac{5}{29} a^{5} - \frac{5}{29} a^{4} + \frac{9}{29} a^{2} - \frac{12}{29} a - \frac{5}{29}$, $\frac{1}{5875429} a^{15} + \frac{19241}{5875429} a^{14} + \frac{1501494}{5875429} a^{13} - \frac{2801857}{5875429} a^{12} + \frac{319705}{839347} a^{11} + \frac{2744297}{5875429} a^{10} - \frac{2795565}{5875429} a^{9} + \frac{532405}{5875429} a^{8} - \frac{2818955}{5875429} a^{7} - \frac{2397659}{5875429} a^{6} - \frac{2291126}{5875429} a^{5} + \frac{2157131}{5875429} a^{4} + \frac{2268592}{5875429} a^{3} - \frac{2190170}{5875429} a^{2} + \frac{2214075}{5875429} a + \frac{1103271}{5875429}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1959.9073218 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1702:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8192
The 104 conjugacy class representatives for t16n1702 are not computed
Character table for t16n1702 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.6.94086875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.3.3$x^{4} + 58$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
$179$179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.4.0.1$x^{4} - x + 7$$1$$4$$0$$C_4$$[\ ]^{4}$
179.4.0.1$x^{4} - x + 7$$1$$4$$0$$C_4$$[\ ]^{4}$
179.4.2.1$x^{4} + 2327 x^{2} + 1570009$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$