Normalized defining polynomial
\( x^{16} - 87 x^{14} - 118 x^{13} + 1873 x^{12} + 3946 x^{11} - 12663 x^{10} + 2618 x^{9} + 417084 x^{8} + 571692 x^{7} - 4831565 x^{6} - 3507946 x^{5} + 124706865 x^{4} + 279583018 x^{3} - 192536149 x^{2} - 13014714 x + 201601 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6349373517752981266040449600000000=2^{12}\cdot 5^{8}\cdot 41^{8}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} + \frac{1}{8} a^{3} - \frac{3}{16} a^{2} + \frac{3}{8} a - \frac{1}{16}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} + \frac{1}{32} a^{11} - \frac{3}{32} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{3}{16} a^{6} + \frac{3}{16} a^{5} - \frac{1}{8} a^{4} - \frac{5}{32} a^{3} + \frac{1}{32} a^{2} + \frac{9}{32} a - \frac{7}{32}$, $\frac{1}{160} a^{14} + \frac{1}{160} a^{13} - \frac{1}{32} a^{12} - \frac{17}{160} a^{11} + \frac{13}{80} a^{10} - \frac{1}{8} a^{9} + \frac{7}{40} a^{8} + \frac{3}{80} a^{7} - \frac{11}{80} a^{6} + \frac{7}{20} a^{5} + \frac{59}{160} a^{4} - \frac{1}{160} a^{3} + \frac{23}{160} a^{2} + \frac{7}{32} a - \frac{13}{80}$, $\frac{1}{735896934131366645720381615350185251630000709562747726091840} a^{15} + \frac{448401115844276132992628680284002018909089513279067225}{327793734579673338850949494588055791371937955261802996032} a^{14} - \frac{2179352358787188835347530316196045698996574596007089490149}{183974233532841661430095403837546312907500177390686931522960} a^{13} + \frac{9117221886111799965110111858572030173697009033041536884289}{367948467065683322860190807675092625815000354781373863045920} a^{12} + \frac{4623078760913814707990685256666196963486640888085296134333}{23738610778431182120012310172586621020322603534282184712640} a^{11} - \frac{1818459264211022447899391664904442196573468174545309220611}{12063884166087977798694780579511233633278700156766356165440} a^{10} + \frac{22045804163107223585175251360178311939061609867195814626141}{91987116766420830715047701918773156453750088695343465761480} a^{9} + \frac{71122954621758614602893255250217561867847851044076296603669}{367948467065683322860190807675092625815000354781373863045920} a^{8} - \frac{27067260780039620890035081762769228627341669573491434926749}{367948467065683322860190807675092625815000354781373863045920} a^{7} - \frac{27807467224093461343548447341948909539324583700287249101221}{367948467065683322860190807675092625815000354781373863045920} a^{6} + \frac{19832457457246920976308447171349105467837726830595798779513}{735896934131366645720381615350185251630000709562747726091840} a^{5} + \frac{10579124153165666310118685026835899869564483070248597098907}{147179386826273329144076323070037050326000141912549545218368} a^{4} + \frac{138167497398773307145985103768683344518757357733789454816637}{367948467065683322860190807675092625815000354781373863045920} a^{3} + \frac{4820063397198113397841891566412159621166599831004465672967}{45993558383210415357523850959386578226875044347671732880740} a^{2} - \frac{44674071203294634472468814208137036175729856933120608348321}{735896934131366645720381615350185251630000709562747726091840} a - \frac{77068354074156913615328803391928178181991984848496936431}{1638968672898366694254747472940278956859689776309014980160}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23039056748.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4.C_2^3.C_2$ (as 16T264):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $D_4.C_2^3.C_2$ |
| Character table for $D_4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{205}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{41}) \), 4.4.2225.1, 4.4.3740225.1, \(\Q(\sqrt{5}, \sqrt{41})\), 8.8.13989283050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.6.2 | $x^{8} + 979 x^{4} + 285156$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |