Properties

Label 16.8.63152272493...1552.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{28}\cdot 113^{7}$
Root discriminant $26.61$
Ramified primes $2, 113$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $(C_2^3\times C_4).D_4$ (as 16T675)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![263, -572, -838, 1606, 401, -1152, 47, 124, 114, 44, -87, 16, 17, 0, -5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 5*x^14 + 17*x^12 + 16*x^11 - 87*x^10 + 44*x^9 + 114*x^8 + 124*x^7 + 47*x^6 - 1152*x^5 + 401*x^4 + 1606*x^3 - 838*x^2 - 572*x + 263)
 
gp: K = bnfinit(x^16 - 2*x^15 - 5*x^14 + 17*x^12 + 16*x^11 - 87*x^10 + 44*x^9 + 114*x^8 + 124*x^7 + 47*x^6 - 1152*x^5 + 401*x^4 + 1606*x^3 - 838*x^2 - 572*x + 263, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 5 x^{14} + 17 x^{12} + 16 x^{11} - 87 x^{10} + 44 x^{9} + 114 x^{8} + 124 x^{7} + 47 x^{6} - 1152 x^{5} + 401 x^{4} + 1606 x^{3} - 838 x^{2} - 572 x + 263 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(63152272493220359831552=2^{28}\cdot 113^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 113$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4772} a^{14} - \frac{15}{4772} a^{13} - \frac{747}{4772} a^{12} + \frac{573}{1193} a^{11} + \frac{520}{1193} a^{10} + \frac{351}{1193} a^{9} - \frac{1235}{4772} a^{8} - \frac{1465}{4772} a^{7} - \frac{1165}{2386} a^{6} - \frac{2235}{4772} a^{5} - \frac{474}{1193} a^{4} + \frac{1309}{4772} a^{3} - \frac{233}{1193} a^{2} + \frac{1663}{4772} a + \frac{1411}{4772}$, $\frac{1}{7582646899741188908} a^{15} - \frac{172287361407490}{1895661724935297227} a^{14} - \frac{751100605930255399}{3791323449870594454} a^{13} - \frac{270685442800585401}{7582646899741188908} a^{12} - \frac{791127183874540534}{1895661724935297227} a^{11} + \frac{476123851858152420}{1895661724935297227} a^{10} - \frac{1585503257402944019}{7582646899741188908} a^{9} + \frac{1377041369679943987}{3791323449870594454} a^{8} - \frac{1446506628765706143}{7582646899741188908} a^{7} + \frac{2879650183477709839}{7582646899741188908} a^{6} - \frac{3199181399432755919}{7582646899741188908} a^{5} - \frac{1968635662165317175}{7582646899741188908} a^{4} + \frac{573793121098694717}{7582646899741188908} a^{3} - \frac{777507726972147281}{7582646899741188908} a^{2} + \frac{117696403248437681}{3791323449870594454} a - \frac{1604931563790309051}{7582646899741188908}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 319502.669829 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2^3\times C_4).D_4$ (as 16T675):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$
Character table for $(C_2^3\times C_4).D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.7232.1, 8.8.5910106112.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ $16$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ $16$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ $16$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.3$x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$$4$$2$$16$$C_4\times C_2$$[2, 3]^{2}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$113$113.4.0.1$x^{4} - x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
113.4.3.4$x^{4} + 3051$$4$$1$$3$$C_4$$[\ ]_{4}$
113.8.4.1$x^{8} + 127690 x^{4} - 1442897 x^{2} + 4076184025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$