Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} + 17 x^{12} + 16 x^{11} - 87 x^{10} + 44 x^{9} + 114 x^{8} + 124 x^{7} + 47 x^{6} - 1152 x^{5} + 401 x^{4} + 1606 x^{3} - 838 x^{2} - 572 x + 263 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63152272493220359831552=2^{28}\cdot 113^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4772} a^{14} - \frac{15}{4772} a^{13} - \frac{747}{4772} a^{12} + \frac{573}{1193} a^{11} + \frac{520}{1193} a^{10} + \frac{351}{1193} a^{9} - \frac{1235}{4772} a^{8} - \frac{1465}{4772} a^{7} - \frac{1165}{2386} a^{6} - \frac{2235}{4772} a^{5} - \frac{474}{1193} a^{4} + \frac{1309}{4772} a^{3} - \frac{233}{1193} a^{2} + \frac{1663}{4772} a + \frac{1411}{4772}$, $\frac{1}{7582646899741188908} a^{15} - \frac{172287361407490}{1895661724935297227} a^{14} - \frac{751100605930255399}{3791323449870594454} a^{13} - \frac{270685442800585401}{7582646899741188908} a^{12} - \frac{791127183874540534}{1895661724935297227} a^{11} + \frac{476123851858152420}{1895661724935297227} a^{10} - \frac{1585503257402944019}{7582646899741188908} a^{9} + \frac{1377041369679943987}{3791323449870594454} a^{8} - \frac{1446506628765706143}{7582646899741188908} a^{7} + \frac{2879650183477709839}{7582646899741188908} a^{6} - \frac{3199181399432755919}{7582646899741188908} a^{5} - \frac{1968635662165317175}{7582646899741188908} a^{4} + \frac{573793121098694717}{7582646899741188908} a^{3} - \frac{777507726972147281}{7582646899741188908} a^{2} + \frac{117696403248437681}{3791323449870594454} a - \frac{1604931563790309051}{7582646899741188908}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 319502.669829 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7232.1, 8.8.5910106112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.3.4 | $x^{4} + 3051$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 113.8.4.1 | $x^{8} + 127690 x^{4} - 1442897 x^{2} + 4076184025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |