Normalized defining polynomial
\( x^{16} - 6 x^{15} + 19 x^{14} - 28 x^{13} - 64 x^{12} + 266 x^{11} - 76 x^{10} - 622 x^{9} + 499 x^{8} + 642 x^{7} - 712 x^{6} - 106 x^{5} + 122 x^{4} - 128 x^{3} + 493 x^{2} - 390 x + 89 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63152272493220359831552=2^{28}\cdot 113^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{53} a^{14} + \frac{21}{53} a^{13} + \frac{15}{53} a^{12} - \frac{7}{53} a^{11} - \frac{20}{53} a^{10} + \frac{13}{53} a^{9} - \frac{18}{53} a^{8} + \frac{2}{53} a^{7} + \frac{19}{53} a^{6} + \frac{13}{53} a^{5} + \frac{26}{53} a^{4} + \frac{10}{53} a^{3} + \frac{15}{53} a^{2} + \frac{26}{53} a - \frac{3}{53}$, $\frac{1}{9860345564167411} a^{15} - \frac{69362699817163}{9860345564167411} a^{14} + \frac{3441636426331092}{9860345564167411} a^{13} - \frac{3601251261365246}{9860345564167411} a^{12} + \frac{2582148770508232}{9860345564167411} a^{11} - \frac{3874120630900558}{9860345564167411} a^{10} + \frac{3110352085358265}{9860345564167411} a^{9} - \frac{17020942276405}{186044255927687} a^{8} - \frac{2909642880706356}{9860345564167411} a^{7} + \frac{2355787752796825}{9860345564167411} a^{6} - \frac{120736318135043}{9860345564167411} a^{5} + \frac{2947306463322386}{9860345564167411} a^{4} - \frac{4173695257093971}{9860345564167411} a^{3} - \frac{347716551348230}{9860345564167411} a^{2} - \frac{411739812445778}{9860345564167411} a - \frac{3496593800051518}{9860345564167411}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 240620.117375 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7232.1, 8.8.5910106112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.3.4 | $x^{4} + 3051$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 113.8.4.1 | $x^{8} + 127690 x^{4} - 1442897 x^{2} + 4076184025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |