Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 28535 x^{12} + 171756 x^{11} - 1363335 x^{10} + 5241530 x^{9} + 96731439 x^{8} - 416484476 x^{7} + 5419873627 x^{6} - 14781801288 x^{5} - 10127121036 x^{4} + 44395141190 x^{3} - 2031620275545 x^{2} + 2007029914720 x + 8241104367689 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(62141154520506997217088824525941184562505001=41^{15}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $545.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{43} a^{4} - \frac{2}{43} a^{3} - \frac{20}{43} a^{2} + \frac{21}{43} a - \frac{8}{43}$, $\frac{1}{43} a^{5} + \frac{19}{43} a^{3} - \frac{19}{43} a^{2} - \frac{9}{43} a - \frac{16}{43}$, $\frac{1}{43} a^{6} + \frac{19}{43} a^{3} - \frac{16}{43} a^{2} + \frac{15}{43} a - \frac{20}{43}$, $\frac{1}{43} a^{7} - \frac{21}{43} a^{3} + \frac{8}{43} a^{2} + \frac{11}{43} a - \frac{20}{43}$, $\frac{1}{3698} a^{8} - \frac{2}{1849} a^{7} + \frac{7}{3698} a^{6} - \frac{7}{3698} a^{5} - \frac{1}{3698} a^{4} + \frac{9}{3698} a^{3} + \frac{574}{1849} a^{2} - \frac{1153}{3698} a + \frac{1827}{3698}$, $\frac{1}{3698} a^{9} - \frac{9}{3698} a^{7} + \frac{21}{3698} a^{6} - \frac{29}{3698} a^{5} + \frac{5}{3698} a^{4} + \frac{592}{1849} a^{3} - \frac{259}{3698} a^{2} + \frac{913}{3698} a - \frac{44}{1849}$, $\frac{1}{3698} a^{10} - \frac{15}{3698} a^{7} + \frac{17}{1849} a^{6} + \frac{14}{1849} a^{5} - \frac{29}{3698} a^{4} + \frac{83}{1849} a^{3} + \frac{409}{3698} a^{2} + \frac{457}{3698} a - \frac{1187}{3698}$, $\frac{1}{3698} a^{11} - \frac{13}{1849} a^{7} - \frac{39}{3698} a^{6} + \frac{19}{1849} a^{5} - \frac{21}{3698} a^{4} + \frac{444}{1849} a^{3} - \frac{1587}{3698} a^{2} - \frac{168}{1849} a - \frac{115}{3698}$, $\frac{1}{159014} a^{12} - \frac{3}{79507} a^{11} - \frac{5}{159014} a^{10} - \frac{3}{79507} a^{9} - \frac{2}{79507} a^{8} + \frac{122}{79507} a^{7} + \frac{323}{79507} a^{6} + \frac{1093}{159014} a^{5} - \frac{785}{159014} a^{4} - \frac{23165}{159014} a^{3} + \frac{77123}{159014} a^{2} + \frac{38093}{79507} a + \frac{19655}{159014}$, $\frac{1}{159014} a^{13} + \frac{1}{79507} a^{11} + \frac{7}{159014} a^{10} + \frac{3}{159014} a^{9} + \frac{5}{159014} a^{8} + \frac{410}{79507} a^{7} + \frac{227}{79507} a^{6} + \frac{1473}{159014} a^{5} - \frac{11}{159014} a^{4} - \frac{39254}{79507} a^{3} - \frac{2661}{159014} a^{2} - \frac{14820}{79507} a - \frac{60993}{159014}$, $\frac{1}{8118869055645235773138574} a^{14} - \frac{7}{8118869055645235773138574} a^{13} - \frac{18408103118835894891}{8118869055645235773138574} a^{12} + \frac{110448618713015369437}{8118869055645235773138574} a^{11} - \frac{12659142598350642796}{4059434527822617886569287} a^{10} - \frac{442927122776233896023}{4059434527822617886569287} a^{9} - \frac{417472694190381277690}{4059434527822617886569287} a^{8} + \frac{9869841832681026037889}{8118869055645235773138574} a^{7} + \frac{15682779365012915829657}{4059434527822617886569287} a^{6} + \frac{27617131514597408341682}{4059434527822617886569287} a^{5} - \frac{29298004109489842706983}{4059434527822617886569287} a^{4} + \frac{3941121007018390749598115}{8118869055645235773138574} a^{3} + \frac{2123327008297280811495701}{8118869055645235773138574} a^{2} + \frac{507714196193622482559691}{8118869055645235773138574} a - \frac{1345682171501305328303192}{4059434527822617886569287}$, $\frac{1}{519031179858344277740975897246} a^{15} + \frac{31957}{519031179858344277740975897246} a^{14} - \frac{698281788717431062925355}{519031179858344277740975897246} a^{13} + \frac{2468943067859398909351}{1867018632583972222089841357} a^{12} + \frac{34585802587252952533990794}{259515589929172138870487948623} a^{11} - \frac{3509737657086623157079954}{259515589929172138870487948623} a^{10} + \frac{4488443365059647942976125}{259515589929172138870487948623} a^{9} - \frac{29991360243583746656422931}{259515589929172138870487948623} a^{8} - \frac{1601036701952068788694196821}{519031179858344277740975897246} a^{7} - \frac{5016625066974797036202976963}{519031179858344277740975897246} a^{6} - \frac{2765330434591790378804707188}{259515589929172138870487948623} a^{5} + \frac{494506839515085078853614394}{259515589929172138870487948623} a^{4} + \frac{125553087674105671553260862097}{519031179858344277740975897246} a^{3} - \frac{164585041214565505166317551295}{519031179858344277740975897246} a^{2} - \frac{117907380182291504231283681800}{259515589929172138870487948623} a + \frac{69237296863076320429389885849}{519031179858344277740975897246}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5540181992490000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.665826106298636681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | R | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $43$ | 43.8.6.3 | $x^{8} - 43 x^{4} + 5547$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 43.8.6.3 | $x^{8} - 43 x^{4} + 5547$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |