Normalized defining polynomial
\( x^{16} - 3 x^{15} - 124 x^{14} + 2318 x^{13} - 7756 x^{12} - 113391 x^{11} + 1228607 x^{10} - 2698673 x^{9} - 29351828 x^{8} + 218778821 x^{7} - 398785415 x^{6} - 2066647462 x^{5} + 12585895662 x^{4} - 26338087641 x^{3} + 25503742812 x^{2} - 12111231250 x + 3157789331 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6140055757001090562172708710746489091361=11^{12}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{132} a^{12} - \frac{2}{33} a^{11} - \frac{1}{33} a^{10} - \frac{43}{132} a^{9} - \frac{19}{132} a^{8} + \frac{8}{33} a^{7} - \frac{37}{132} a^{6} + \frac{7}{33} a^{5} + \frac{17}{44} a^{4} - \frac{5}{132} a^{3} + \frac{15}{44} a^{2} + \frac{29}{132} a + \frac{4}{33}$, $\frac{1}{132} a^{13} - \frac{1}{66} a^{11} - \frac{3}{44} a^{10} - \frac{1}{4} a^{9} + \frac{1}{11} a^{8} + \frac{7}{44} a^{7} + \frac{31}{66} a^{6} + \frac{1}{12} a^{5} + \frac{7}{132} a^{4} - \frac{61}{132} a^{3} - \frac{7}{132} a^{2} + \frac{25}{66} a - \frac{1}{33}$, $\frac{1}{25608} a^{14} + \frac{3}{2134} a^{13} + \frac{73}{25608} a^{12} - \frac{799}{8536} a^{11} + \frac{193}{4268} a^{10} + \frac{527}{2134} a^{9} + \frac{1337}{8536} a^{8} + \frac{91}{12804} a^{7} + \frac{6299}{25608} a^{6} + \frac{865}{6402} a^{5} - \frac{1141}{6402} a^{4} - \frac{3335}{12804} a^{3} + \frac{1801}{12804} a^{2} - \frac{491}{2328} a - \frac{49}{776}$, $\frac{1}{1265596743226987753013708631599487761249182180728719420042514410184} a^{15} - \frac{5075443062168910080513341881685503359945261969533063166180035}{1265596743226987753013708631599487761249182180728719420042514410184} a^{14} + \frac{1259183915302898883904867459844425445002136926760434537270539899}{1265596743226987753013708631599487761249182180728719420042514410184} a^{13} + \frac{1152677587106025101095546101311189451340943503921228773371301953}{632798371613493876506854315799743880624591090364359710021257205092} a^{12} + \frac{103963575071502732456029995316482369067460608793799177869359485975}{1265596743226987753013708631599487761249182180728719420042514410184} a^{11} + \frac{2500999049860142505840792935754632240448426802620707544865532081}{105466395268915646084475719299957313437431848394059951670209534182} a^{10} + \frac{116713902805098067703473068291678657144396230915802688886086736765}{421865581075662584337902877199829253749727393576239806680838136728} a^{9} + \frac{396673522697815781314067107011410237159048477959214470360329298673}{1265596743226987753013708631599487761249182180728719420042514410184} a^{8} - \frac{95326872118744620249651962675606393040523832615837090303034831503}{1265596743226987753013708631599487761249182180728719420042514410184} a^{7} - \frac{22230636798683267373131233222761322275558832911248537889247074833}{115054249384271613910337148327226160113562016429883583640228582744} a^{6} - \frac{12287101568741290664695666352213480122287120338143196173002833549}{158199592903373469126713578949935970156147772591089927505314301273} a^{5} - \frac{160284196630342467575394941640956231555633166461893171044202770131}{632798371613493876506854315799743880624591090364359710021257205092} a^{4} + \frac{84227453336241472225205585289233436895213212709158399788864437621}{210932790537831292168951438599914626874863696788119903340419068364} a^{3} - \frac{160599775026082566920441293852895540836287291753549603245176624367}{421865581075662584337902877199829253749727393576239806680838136728} a^{2} + \frac{189997089074569339126127733387967511607689734755198668776626227309}{632798371613493876506854315799743880624591090364359710021257205092} a - \frac{310286671163222711366825406522427713601117806246492203902309973767}{1265596743226987753013708631599487761249182180728719420042514410184}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61373116180800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.647590974205440089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |