Normalized defining polynomial
\( x^{16} - 4 x^{15} - 26 x^{14} + 598 x^{13} - 2813 x^{12} - 8568 x^{11} + 118599 x^{10} - 433002 x^{9} - 488858 x^{8} + 5813984 x^{7} + 8382561 x^{6} - 67333706 x^{5} - 54374353 x^{4} + 379926932 x^{3} + 124007939 x^{2} - 920391824 x + 254211683 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6140055757001090562172708710746489091361=11^{12}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{8} - \frac{1}{11} a^{7} - \frac{2}{11} a^{6} - \frac{3}{11} a^{5} + \frac{9}{22} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{22} a^{9} + \frac{3}{22} a^{7} - \frac{3}{22} a^{6} + \frac{4}{11} a^{5} + \frac{7}{22} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{22} a^{10} + \frac{3}{22} a^{7} - \frac{1}{11} a^{6} + \frac{3}{22} a^{5} + \frac{3}{11} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{22} a^{11} + \frac{2}{11} a^{7} + \frac{2}{11} a^{6} - \frac{9}{22} a^{5} - \frac{5}{22} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{88} a^{12} - \frac{1}{88} a^{10} - \frac{1}{88} a^{8} - \frac{1}{4} a^{7} + \frac{13}{88} a^{6} + \frac{1}{4} a^{5} - \frac{9}{44} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{88} a^{13} - \frac{1}{88} a^{11} - \frac{1}{88} a^{9} - \frac{1}{44} a^{8} + \frac{17}{88} a^{7} - \frac{7}{44} a^{6} - \frac{3}{44} a^{5} - \frac{9}{44} a^{4} + \frac{1}{4} a^{2} - \frac{1}{8} a$, $\frac{1}{129712} a^{14} + \frac{51}{129712} a^{13} - \frac{177}{32428} a^{12} + \frac{1973}{129712} a^{11} + \frac{447}{64856} a^{10} + \frac{111}{129712} a^{9} - \frac{227}{64856} a^{8} - \frac{1901}{129712} a^{7} - \frac{21479}{129712} a^{6} - \frac{1069}{5896} a^{5} + \frac{927}{2948} a^{4} - \frac{239}{2948} a^{3} - \frac{1659}{11792} a^{2} - \frac{39}{1072} a - \frac{423}{1072}$, $\frac{1}{163483330897379235180341358497136312495183632} a^{15} + \frac{7761209094961824802667750667784009166}{10217708181086202198771334906071019530948977} a^{14} + \frac{762361380192273933123231338900253345646139}{163483330897379235180341358497136312495183632} a^{13} + \frac{850818193291031741808956391873087615579563}{163483330897379235180341358497136312495183632} a^{12} - \frac{3609857126481265312626660473712721277885961}{163483330897379235180341358497136312495183632} a^{11} - \frac{2655992241787117210498898034270411511139349}{163483330897379235180341358497136312495183632} a^{10} + \frac{2672522934642564490240521815713481528361965}{163483330897379235180341358497136312495183632} a^{9} - \frac{950301640156528260001723366440829947196285}{163483330897379235180341358497136312495183632} a^{8} + \frac{3943603011991244480193002580244408602968907}{40870832724344808795085339624284078123795908} a^{7} - \frac{75919977553236394991512138742839328667853}{14862120990670839561849214408830573863198512} a^{6} + \frac{1706910056089068198278387580692049419392447}{7431060495335419780924607204415286931599256} a^{5} + \frac{65432491964587725148458874774735866600153}{3715530247667709890462303602207643465799628} a^{4} - \frac{39441607059970756286814841548800800332147}{14862120990670839561849214408830573863198512} a^{3} - \frac{101087783532391994044594383898912607027981}{337775477060700899132936691109785769618148} a^{2} + \frac{29478016196345788063398274779053096220939}{61413723101945618024170307474506503566936} a + \frac{21031543646095050088174310520661900704925}{122827446203891236048340614949013007133872}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62238536126400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.647590974205440089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |