Normalized defining polynomial
\( x^{16} + 8 x^{14} - 84 x^{13} - 36 x^{12} - 136 x^{11} - 1490 x^{10} + 3132 x^{9} - 427 x^{8} + 110184 x^{7} - 58966 x^{6} - 500820 x^{5} + 1813396 x^{4} - 2043696 x^{3} - 8480970 x^{2} + 6366400 x + 11840473 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60215786657648562405359222784=2^{32}\cdot 3^{8}\cdot 17^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{194} a^{14} + \frac{22}{97} a^{13} + \frac{5}{194} a^{12} - \frac{7}{97} a^{11} + \frac{16}{97} a^{10} - \frac{3}{194} a^{9} - \frac{19}{97} a^{8} + \frac{1}{97} a^{7} - \frac{43}{97} a^{6} - \frac{7}{194} a^{5} + \frac{2}{97} a^{4} - \frac{17}{97} a^{3} + \frac{41}{194} a^{2} + \frac{21}{194} a - \frac{71}{194}$, $\frac{1}{340442273709409610443854530521647215073572244842} a^{15} - \frac{753767191707490368283789470303071457474424597}{340442273709409610443854530521647215073572244842} a^{14} - \frac{22047730136611871902101037570443357413799961008}{170221136854704805221927265260823607536786122421} a^{13} - \frac{5830229870650157846119514687592549648813815049}{170221136854704805221927265260823607536786122421} a^{12} + \frac{36021740071007255917613180654127717010188488139}{170221136854704805221927265260823607536786122421} a^{11} - \frac{76779122741374039712276050968256639587665743887}{340442273709409610443854530521647215073572244842} a^{10} + \frac{7271614639320091665300464077258403953421803169}{340442273709409610443854530521647215073572244842} a^{9} + \frac{22189130332329287000671647823509275760352711110}{170221136854704805221927265260823607536786122421} a^{8} - \frac{30685878575911985258980898990973852415179510520}{170221136854704805221927265260823607536786122421} a^{7} - \frac{131431876011784538599331584493689545994810195313}{340442273709409610443854530521647215073572244842} a^{6} + \frac{138164213734125476321018144034024605584615382067}{340442273709409610443854530521647215073572244842} a^{5} + \frac{50340524690874901743095957995178314911451447910}{170221136854704805221927265260823607536786122421} a^{4} + \frac{157429095562900537677831681930356545428077409547}{340442273709409610443854530521647215073572244842} a^{3} + \frac{531121680370703207955260482535822326019480594}{24317305264957829317418180751546229648112303203} a^{2} - \frac{123637392289895007567635831283645337306429017061}{340442273709409610443854530521647215073572244842} a + \frac{47104423751894068510904163550830936959709881427}{170221136854704805221927265260823607536786122421}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 388644996.742 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.4.9792.1, 4.4.4352.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 97 | Data not computed | ||||||