Normalized defining polynomial
\( x^{16} - 6 x^{15} + 11 x^{14} - 65 x^{13} - 2257 x^{12} + 15255 x^{11} - 46642 x^{10} - 38121 x^{9} + 2494561 x^{8} - 8559267 x^{7} + 10820944 x^{6} + 89342780 x^{5} - 512361357 x^{4} + 634416836 x^{3} + 770369830 x^{2} - 2443995613 x + 1729288237 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6021020430747726555546975715999071923637=3^{10}\cdot 13^{9}\cdot 1327^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 1327$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{7} - \frac{1}{18} a^{6} - \frac{1}{9} a^{5} + \frac{7}{18} a^{4} + \frac{1}{18} a^{3} - \frac{7}{18} a^{2} - \frac{2}{9} a - \frac{7}{18}$, $\frac{1}{1812398329989038265097623840325660922122884656378025197403755982} a^{15} + \frac{33092156866212307885445654976985880334079453045338297278965459}{1812398329989038265097623840325660922122884656378025197403755982} a^{14} - \frac{46020046338022972960738533932615542095037888543881745857194939}{1812398329989038265097623840325660922122884656378025197403755982} a^{13} - \frac{55868005579095306289450836115793402741518685460680803621370225}{604132776663012755032541280108553640707628218792675065801251994} a^{12} - \frac{81135369790989397782419727357404773742146184416728703693781525}{604132776663012755032541280108553640707628218792675065801251994} a^{11} - \frac{44407392268790949187531684320013381373834211230667652055695765}{604132776663012755032541280108553640707628218792675065801251994} a^{10} + \frac{44175037347779860116528943109816435075246690348405273080921861}{906199164994519132548811920162830461061442328189012598701877991} a^{9} - \frac{92380271032638166434032356784007910420448450643609338804898638}{906199164994519132548811920162830461061442328189012598701877991} a^{8} - \frac{154137115610655172276992131545772955253768469794029435216826975}{1812398329989038265097623840325660922122884656378025197403755982} a^{7} + \frac{398148014726961082594907978391317225578644669853955727312936290}{906199164994519132548811920162830461061442328189012598701877991} a^{6} + \frac{218078221230994202071768376295346251493692002029935092069185159}{1812398329989038265097623840325660922122884656378025197403755982} a^{5} + \frac{80504612706427807398774119304195275989307795300339742111813595}{1812398329989038265097623840325660922122884656378025197403755982} a^{4} - \frac{355842014919147751482325233580017840087079741656890738216497765}{1812398329989038265097623840325660922122884656378025197403755982} a^{3} - \frac{449366917347015402246057309080737443439696521486029798592482426}{906199164994519132548811920162830461061442328189012598701877991} a^{2} + \frac{499777930353478505614837036769194593283232787447161152355084255}{1812398329989038265097623840325660922122884656378025197403755982} a - \frac{46890293297464336162322419138758592803006114387031990398723517}{302066388331506377516270640054276820353814109396337532900625997}$
Class group and class number
$C_{2}\times C_{48}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1476738571660 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 54 conjugacy class representatives for t16n1675 are not computed |
| Character table for t16n1675 is not computed |
Intermediate fields
| \(\Q(\sqrt{51753}) \), 4.4.3981.1, 8.8.7173681975339714081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 1327 | Data not computed | ||||||