Normalized defining polynomial
\( x^{16} - 8 x^{15} + 72 x^{14} - 220 x^{13} - 2660 x^{12} + 26877 x^{11} - 202403 x^{10} + 477846 x^{9} + 1234105 x^{8} - 15197529 x^{7} + 75430919 x^{6} - 41505565 x^{5} - 301240263 x^{4} + 2074151994 x^{3} - 1983832568 x^{2} - 3995172348 x + 4653510391 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6021020430747726555546975715999071923637=3^{10}\cdot 13^{9}\cdot 1327^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 1327$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{15} - \frac{273184637158300799201809656494064408851111377371743082303470900932072}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{14} - \frac{50246594630597181851575125616467305146094903909846109843474943976380}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{13} - \frac{88262538072060294353905540045074604387737182332999080172077685400453}{1588881509386396111623910323326723382651603283927437675660746250600893} a^{12} - \frac{2211467980968998448824807993760090566789573839699998063703805601997715}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{11} - \frac{1132991995338671574882343887931446766825498491096400433670091788829325}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{10} - \frac{254173179068974828659298476336309450438553848493006560635858897543066}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{9} + \frac{1433505641464947476628963276385293500618255877199608553252557598409}{10857960200818196662577974874670091453200022441417569537544962988161} a^{8} + \frac{1339178332883934333437691857024893719666385682695019728418760488565635}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{7} - \frac{542793613658454761228222773402798343763977423944024071132109723746487}{1588881509386396111623910323326723382651603283927437675660746250600893} a^{6} - \frac{2118522305695925521336390478757690665018230302722856464665383798904391}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{5} + \frac{787671338359524401433851033196275069809384691461677545839922501118419}{1588881509386396111623910323326723382651603283927437675660746250600893} a^{4} + \frac{722154967771247898873447208738144056267020965035780616696574081023936}{1588881509386396111623910323326723382651603283927437675660746250600893} a^{3} + \frac{671438123983990065789945158552257121546542376209634507967798784081915}{4766644528159188334871730969980170147954809851782313026982238751802679} a^{2} + \frac{322128094727233012733772086174041303698470611219726406352837999595135}{1588881509386396111623910323326723382651603283927437675660746250600893} a + \frac{1072481254616696422090359649693493366128621224977593102076448039700937}{4766644528159188334871730969980170147954809851782313026982238751802679}$
Class group and class number
$C_{2}\times C_{48}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1594068728730 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 54 conjugacy class representatives for t16n1675 are not computed |
| Character table for t16n1675 is not computed |
Intermediate fields
| \(\Q(\sqrt{51753}) \), 4.4.3981.1, 8.8.7173681975339714081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 1327 | Data not computed | ||||||