Normalized defining polynomial
\( x^{16} - 3 x^{15} - 17 x^{14} + 124 x^{13} - 1476 x^{12} + 412 x^{11} + 47837 x^{10} - 80542 x^{9} - 257892 x^{8} + 1864157 x^{7} - 3412593 x^{6} - 16023466 x^{5} + 39257376 x^{4} + 37514732 x^{3} - 115827035 x^{2} + 48133287 x + 23651317 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(584820771442796870588072252861681953=31^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $171.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{701} a^{14} + \frac{180}{701} a^{13} + \frac{213}{701} a^{12} - \frac{254}{701} a^{11} - \frac{281}{701} a^{10} + \frac{250}{701} a^{9} - \frac{349}{701} a^{8} - \frac{338}{701} a^{7} - \frac{85}{701} a^{6} - \frac{127}{701} a^{5} - \frac{49}{701} a^{4} + \frac{182}{701} a^{3} - \frac{64}{701} a^{2} - \frac{107}{701} a + \frac{197}{701}$, $\frac{1}{43638531836760902866245007194858323058531192289429213699} a^{15} - \frac{9705123810870083678679579527899292362345288502410775}{43638531836760902866245007194858323058531192289429213699} a^{14} - \frac{4743742443212269731838508595024388461880370585202200076}{43638531836760902866245007194858323058531192289429213699} a^{13} + \frac{8692766789351644211185769528182471326855851360649824148}{43638531836760902866245007194858323058531192289429213699} a^{12} - \frac{2990404522384147464396695401234314021168755347896873684}{43638531836760902866245007194858323058531192289429213699} a^{11} - \frac{11616802905815476811305158506276305578841063680893894612}{43638531836760902866245007194858323058531192289429213699} a^{10} - \frac{4248830760280568807042794447845344039083439571951001442}{43638531836760902866245007194858323058531192289429213699} a^{9} - \frac{18453289294389069913900174682315602714200284239211266566}{43638531836760902866245007194858323058531192289429213699} a^{8} - \frac{1616307856249763571905504719358653765786841443164281758}{43638531836760902866245007194858323058531192289429213699} a^{7} + \frac{7694793832270209079254058862531406155101027767772870921}{43638531836760902866245007194858323058531192289429213699} a^{6} - \frac{19727578777337907664165132841727281204551381398620184789}{43638531836760902866245007194858323058531192289429213699} a^{5} + \frac{16734218272123297065237452544601565107603084555761393557}{43638531836760902866245007194858323058531192289429213699} a^{4} + \frac{859049354192456182245452906330712757771345790523533331}{43638531836760902866245007194858323058531192289429213699} a^{3} + \frac{6722364924496777507696589404829993412116652778815800331}{43638531836760902866245007194858323058531192289429213699} a^{2} - \frac{11126329639360638379744026465694524707579232014994990680}{43638531836760902866245007194858323058531192289429213699} a - \frac{4350796053946759562402461221175690459960356497633923488}{43638531836760902866245007194858323058531192289429213699}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 321228696477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.8.4.2 | $x^{8} - 59582 x^{2} + 15699857$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97 | Data not computed | ||||||