Normalized defining polynomial
\( x^{16} - 28 x^{14} - 8 x^{13} + 118 x^{12} + 56 x^{11} + 816 x^{10} + 524 x^{9} + 491 x^{8} - 2512 x^{7} - 24040 x^{6} - 24580 x^{5} - 14566 x^{4} - 52240 x^{3} - 63480 x^{2} - 24152 x + 3778 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5845473351728475416888868864=2^{40}\cdot 3^{4}\cdot 17^{8}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{3}{7} a^{8} + \frac{3}{7} a^{7} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{11} + \frac{2}{7} a^{9} + \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7}$, $\frac{1}{21} a^{12} + \frac{1}{3} a^{9} - \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{3}{7} a^{6} - \frac{2}{21} a^{5} + \frac{2}{21} a^{4} - \frac{3}{7} a^{3} - \frac{8}{21} a^{2} + \frac{4}{21} a + \frac{1}{21}$, $\frac{1}{21} a^{13} + \frac{1}{21} a^{10} - \frac{2}{7} a^{9} + \frac{3}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{21} a^{6} - \frac{10}{21} a^{5} - \frac{5}{21} a^{3} + \frac{1}{21} a^{2} + \frac{1}{3} a + \frac{1}{7}$, $\frac{1}{160923} a^{14} + \frac{1030}{53641} a^{13} + \frac{751}{53641} a^{12} + \frac{3571}{160923} a^{11} + \frac{55}{53641} a^{10} - \frac{8767}{53641} a^{9} + \frac{2430}{7663} a^{8} - \frac{13646}{160923} a^{7} - \frac{76771}{160923} a^{6} - \frac{2389}{7663} a^{5} + \frac{1057}{22989} a^{4} - \frac{31253}{160923} a^{3} + \frac{24826}{160923} a^{2} + \frac{15808}{53641} a + \frac{320}{53641}$, $\frac{1}{1798745027012708837891751111} a^{15} - \frac{418378309878736797406}{599581675670902945963917037} a^{14} + \frac{1344082885827960599493142}{599581675670902945963917037} a^{13} - \frac{527050718411287798267543}{256963575287529833984535873} a^{12} - \frac{3789273882114477016002592}{599581675670902945963917037} a^{11} + \frac{914555244033410399362235}{85654525095843277994845291} a^{10} + \frac{533813155598113997035966885}{1798745027012708837891751111} a^{9} - \frac{705074234720815985473587617}{1798745027012708837891751111} a^{8} - \frac{572180330204099776136257720}{1798745027012708837891751111} a^{7} - \frac{247158976079279547154637693}{599581675670902945963917037} a^{6} + \frac{797305553008182775706501543}{1798745027012708837891751111} a^{5} - \frac{35024665174844823971786922}{599581675670902945963917037} a^{4} - \frac{133086830238032569741999115}{1798745027012708837891751111} a^{3} + \frac{320004112958665344567865384}{1798745027012708837891751111} a^{2} + \frac{648838932811569051279746734}{1798745027012708837891751111} a + \frac{504831038159254590604658473}{1798745027012708837891751111}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60026838.4455 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T608):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{34}) \), 4.4.4352.1 x2, 4.4.9248.1 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 8.8.5473632256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.53 | $x^{8} + 4 x^{5} + 2 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.8.20.53 | $x^{8} + 4 x^{5} + 2 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |