/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 7*x^15 + 12*x^14 + 21*x^13 - 107*x^12 + 157*x^11 - 42*x^10 - 196*x^9 + 323*x^8 - 196*x^7 - 42*x^6 + 157*x^5 - 107*x^4 + 21*x^3 + 12*x^2 - 7*x + 1, 16, 1759, [8, 4], 578688312360508203125, [5, 19, 101, 103], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, 1/4*a^12 - 1/4*a^10 + 1/4*a^9 + 1/4*a^7 + 1/4*a^6 + 1/4*a^5 + 1/4*a^3 - 1/4*a^2 + 1/4, 1/4*a^13 - 1/4*a^11 + 1/4*a^10 + 1/4*a^8 + 1/4*a^7 + 1/4*a^6 + 1/4*a^4 - 1/4*a^3 + 1/4*a, 1/204*a^14 - 4/51*a^13 + 1/102*a^12 - 83/204*a^11 + 77/204*a^10 - 8/17*a^9 - 71/204*a^8 + 20/51*a^7 + 31/204*a^6 - 8/17*a^5 - 25/204*a^4 + 19/204*a^3 + 1/102*a^2 - 4/51*a - 101/204, 1/204*a^15 + 1/204*a^13 - 13/34*a^11 - 22/51*a^10 + 19/51*a^9 + 5/68*a^8 - 5/68*a^7 + 47/102*a^6 - 41/102*a^5 + 13/34*a^4 - 1/2*a^3 - 35/204*a^2 - 1/2*a + 67/204], 0, 1, [], 1, [ (367)/(51)*a^(15) - (2455)/(51)*a^(14) + (3641)/(51)*a^(13) + (8860)/(51)*a^(12) - (36613)/(51)*a^(11) + (15405)/(17)*a^(10) - (404)/(51)*a^(9) - (72895)/(51)*a^(8) + (95680)/(51)*a^(7) - (13546)/(17)*a^(6) - (29473)/(51)*a^(5) + (48385)/(51)*a^(4) - (23185)/(51)*a^(3) - (211)/(51)*a^(2) + (4345)/(51)*a - 20 , a^(15) - 7*a^(14) + 12*a^(13) + 21*a^(12) - 107*a^(11) + 157*a^(10) - 42*a^(9) - 196*a^(8) + 323*a^(7) - 196*a^(6) - 42*a^(5) + 157*a^(4) - 107*a^(3) + 21*a^(2) + 12*a - 6 , a - 1 , (307)/(68)*a^(15) - (1937)/(68)*a^(14) + (587)/(17)*a^(13) + (8043)/(68)*a^(12) - (6802)/(17)*a^(11) + (29467)/(68)*a^(10) + (6797)/(68)*a^(9) - (54643)/(68)*a^(8) + (61741)/(68)*a^(7) - (19323)/(68)*a^(6) - (24709)/(68)*a^(5) + (7863)/(17)*a^(4) - (12629)/(68)*a^(3) - (361)/(17)*a^(2) + (2891)/(68)*a - (33)/(4) , (253)/(68)*a^(15) - (73)/(3)*a^(14) + (6845)/(204)*a^(13) + (557)/(6)*a^(12) - (18056)/(51)*a^(11) + (21620)/(51)*a^(10) + (859)/(34)*a^(9) - (143213)/(204)*a^(8) + (180851)/(204)*a^(7) - (36271)/(102)*a^(6) - (4957)/(17)*a^(5) + (23156)/(51)*a^(4) - (1277)/(6)*a^(3) - (1099)/(204)*a^(2) + (130)/(3)*a - (2153)/(204) , (1023)/(68)*a^(15) - (5126)/(51)*a^(14) + (30131)/(204)*a^(13) + (37483)/(102)*a^(12) - (76277)/(51)*a^(11) + (94904)/(51)*a^(10) + (605)/(34)*a^(9) - (606623)/(204)*a^(8) + (786125)/(204)*a^(7) - (164083)/(102)*a^(6) - (20505)/(17)*a^(5) + (99434)/(51)*a^(4) - (94879)/(102)*a^(3) - (1441)/(204)*a^(2) + (8933)/(51)*a - (8987)/(204) , (93)/(17)*a^(15) - (7223)/(204)*a^(14) + (2396)/(51)*a^(13) + (14197)/(102)*a^(12) - (104027)/(204)*a^(11) + (120413)/(204)*a^(10) + (1170)/(17)*a^(9) - (207479)/(204)*a^(8) + (62699)/(51)*a^(7) - (92081)/(204)*a^(6) - (7421)/(17)*a^(5) + (126659)/(204)*a^(4) - (55229)/(204)*a^(3) - (1661)/(102)*a^(2) + (2780)/(51)*a - (2117)/(204) , (637)/(68)*a^(15) - (3175)/(51)*a^(14) + (9251)/(102)*a^(13) + (46255)/(204)*a^(12) - (187633)/(204)*a^(11) + (58906)/(51)*a^(10) - (975)/(68)*a^(9) - (92674)/(51)*a^(8) + (490741)/(204)*a^(7) - (53440)/(51)*a^(6) - (48785)/(68)*a^(5) + (249757)/(204)*a^(4) - (61745)/(102)*a^(3) + (274)/(51)*a^(2) + (23221)/(204)*a - (1549)/(51) , (2683)/(204)*a^(15) - (4459)/(51)*a^(14) + (26021)/(204)*a^(13) + (32501)/(102)*a^(12) - (66073)/(51)*a^(11) + (27615)/(17)*a^(10) - (157)/(102)*a^(9) - (526237)/(204)*a^(8) + (688747)/(204)*a^(7) - (48555)/(34)*a^(6) - (53578)/(51)*a^(5) + (87625)/(51)*a^(4) - (83915)/(102)*a^(3) - (2179)/(204)*a^(2) + (8053)/(51)*a - (151)/(4) , (49)/(34)*a^(15) - (735)/(68)*a^(14) + (1471)/(68)*a^(13) + (1811)/(68)*a^(12) - (3018)/(17)*a^(11) + (19373)/(68)*a^(10) - (6363)/(68)*a^(9) - (5894)/(17)*a^(8) + (10067)/(17)*a^(7) - (23603)/(68)*a^(6) - (7431)/(68)*a^(5) + (5217)/(17)*a^(4) - (12401)/(68)*a^(3) + (999)/(68)*a^(2) + (2053)/(68)*a - (17)/(2) , (1060)/(51)*a^(15) - (9387)/(68)*a^(14) + (20399)/(102)*a^(13) + (34555)/(68)*a^(12) - (138925)/(68)*a^(11) + (15197)/(6)*a^(10) + (7975)/(204)*a^(9) - (276937)/(68)*a^(8) + (357915)/(68)*a^(7) - (222247)/(102)*a^(6) - (341665)/(204)*a^(5) + (182021)/(68)*a^(4) - (42911)/(34)*a^(3) - (5057)/(204)*a^(2) + (8337)/(34)*a - (2945)/(51) ], 26055.5273506, [[x^2 - x - 1, 1], [x^4 - 4*x^2 - x + 1, 1], [x^8 - 12*x^6 - 4*x^5 + 23*x^4 + 4*x^3 - 13*x^2 + x + 1, 1]]]