Normalized defining polynomial
\( x^{16} - x^{15} + x^{14} + 16 x^{13} - 118 x^{12} + 152 x^{11} - 254 x^{10} - 1055 x^{9} + 4234 x^{8} - 9028 x^{7} + 11255 x^{6} + 8856 x^{5} - 53600 x^{4} + 108034 x^{3} - 108306 x^{2} + 39813 x - 4079 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57681033264163530732453953=17^{15}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{883} a^{14} - \frac{234}{883} a^{13} - \frac{286}{883} a^{12} + \frac{160}{883} a^{11} + \frac{46}{883} a^{10} - \frac{337}{883} a^{9} + \frac{314}{883} a^{8} - \frac{6}{883} a^{7} - \frac{22}{883} a^{6} + \frac{8}{883} a^{5} + \frac{181}{883} a^{4} - \frac{267}{883} a^{3} - \frac{143}{883} a^{2} + \frac{117}{883} a - \frac{289}{883}$, $\frac{1}{22296956500607539085182810116491} a^{15} + \frac{445033861990178930425498211}{22296956500607539085182810116491} a^{14} - \frac{1544547739460840643070937107969}{22296956500607539085182810116491} a^{13} + \frac{5280434034832534544138696660649}{22296956500607539085182810116491} a^{12} - \frac{2912085517481590681930199339592}{22296956500607539085182810116491} a^{11} - \frac{2111050407284085872619372754620}{22296956500607539085182810116491} a^{10} - \frac{7281915473110410969019449953161}{22296956500607539085182810116491} a^{9} + \frac{2468833028594095731433376401813}{22296956500607539085182810116491} a^{8} + \frac{10395689246422273152992012477380}{22296956500607539085182810116491} a^{7} + \frac{746995761465498502089647526032}{22296956500607539085182810116491} a^{6} + \frac{9344699878355052064280214815695}{22296956500607539085182810116491} a^{5} - \frac{8076986963633161119765448648000}{22296956500607539085182810116491} a^{4} + \frac{8153417425084359606683605382055}{22296956500607539085182810116491} a^{3} - \frac{7426680465401776395929430314527}{22296956500607539085182810116491} a^{2} + \frac{324774074427902793573582409361}{22296956500607539085182810116491} a + \frac{10292068366952025491536998214264}{22296956500607539085182810116491}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5141408.95892 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $67$ | 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.1.1 | $x^{2} - 67$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |