Normalized defining polynomial
\( x^{16} - 5 x^{15} + 8 x^{14} - 23 x^{13} + 30 x^{12} + 411 x^{11} - 2123 x^{10} + 4070 x^{9} + 900 x^{8} - 21262 x^{7} + 49921 x^{6} - 61449 x^{5} + 22291 x^{4} + 63033 x^{3} - 131072 x^{2} + 138577 x - 70141 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57681033264163530732453953=17^{15}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10458309593730227510051966430654409} a^{15} - \frac{3537646812107010103553764218659861}{10458309593730227510051966430654409} a^{14} - \frac{2626786609770511981637839752730090}{10458309593730227510051966430654409} a^{13} - \frac{3410239728823558062690127611692508}{10458309593730227510051966430654409} a^{12} + \frac{703873057320199110310149310040576}{10458309593730227510051966430654409} a^{11} - \frac{4534315989232486052088330606967946}{10458309593730227510051966430654409} a^{10} + \frac{3398266716086615064793272644227009}{10458309593730227510051966430654409} a^{9} + \frac{1260614657998396618049409698849559}{10458309593730227510051966430654409} a^{8} + \frac{982428992688424766370877129906445}{10458309593730227510051966430654409} a^{7} - \frac{1962615354926083586646020002911666}{10458309593730227510051966430654409} a^{6} - \frac{1368877776711190602332290064230897}{10458309593730227510051966430654409} a^{5} - \frac{4309403201267013273146404355309812}{10458309593730227510051966430654409} a^{4} - \frac{4540053214706332871762257302827213}{10458309593730227510051966430654409} a^{3} + \frac{3671353209022348230701132777769674}{10458309593730227510051966430654409} a^{2} + \frac{1497562887392297702935910050532497}{10458309593730227510051966430654409} a - \frac{342298715082426274694409632818209}{10458309593730227510051966430654409}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3256507.75452 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||