Properties

Label 16.8.56401097949...5625.2
Degree $16$
Signature $[8, 4]$
Discriminant $5^{8}\cdot 89^{5}\cdot 401^{4}$
Root discriminant $40.69$
Ramified primes $5, 89, 401$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1702

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![101, 535, 2287, 7164, 12190, 11877, 7742, 3344, 891, -768, -898, -229, 90, 74, -5, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 - 5*x^14 + 74*x^13 + 90*x^12 - 229*x^11 - 898*x^10 - 768*x^9 + 891*x^8 + 3344*x^7 + 7742*x^6 + 11877*x^5 + 12190*x^4 + 7164*x^3 + 2287*x^2 + 535*x + 101)
 
gp: K = bnfinit(x^16 - 7*x^15 - 5*x^14 + 74*x^13 + 90*x^12 - 229*x^11 - 898*x^10 - 768*x^9 + 891*x^8 + 3344*x^7 + 7742*x^6 + 11877*x^5 + 12190*x^4 + 7164*x^3 + 2287*x^2 + 535*x + 101, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{15} - 5 x^{14} + 74 x^{13} + 90 x^{12} - 229 x^{11} - 898 x^{10} - 768 x^{9} + 891 x^{8} + 3344 x^{7} + 7742 x^{6} + 11877 x^{5} + 12190 x^{4} + 7164 x^{3} + 2287 x^{2} + 535 x + 101 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(56401097949411803847265625=5^{8}\cdot 89^{5}\cdot 401^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.69$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 89, 401$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{13} + \frac{3}{10} a^{11} + \frac{3}{10} a^{10} + \frac{1}{5} a^{9} - \frac{3}{10} a^{8} + \frac{1}{10} a^{7} + \frac{2}{5} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} + \frac{1}{10} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{3550037287395846562131130} a^{15} - \frac{151515472592920142141521}{3550037287395846562131130} a^{14} + \frac{24810107282128825494590}{355003728739584656213113} a^{13} - \frac{270713312997088856585216}{1775018643697923281065565} a^{12} - \frac{936221512586045726546497}{3550037287395846562131130} a^{11} - \frac{770866589874320489420884}{1775018643697923281065565} a^{10} - \frac{318290864110337199385839}{1775018643697923281065565} a^{9} - \frac{731802016253773576247959}{3550037287395846562131130} a^{8} + \frac{77092704562068415008377}{1775018643697923281065565} a^{7} - \frac{509963088154470344750538}{1775018643697923281065565} a^{6} - \frac{181051268325900573390487}{710007457479169312426226} a^{5} + \frac{320561334239470101947428}{1775018643697923281065565} a^{4} - \frac{340121947231342010935187}{1775018643697923281065565} a^{3} - \frac{269847527239458905338359}{3550037287395846562131130} a^{2} - \frac{696751511872314168737393}{1775018643697923281065565} a + \frac{91523439481631048916069}{710007457479169312426226}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8057998.87868 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1702:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8192
The 104 conjugacy class representatives for t16n1702 are not computed
Character table for t16n1702 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2225.1, 8.8.1985200625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ $16$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$89$89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.3.3$x^{4} + 267$$4$$1$$3$$C_4$$[\ ]_{4}$
401Data not computed