Normalized defining polynomial
\( x^{16} - 2 x^{15} - 30 x^{14} + 88 x^{13} + 124 x^{12} + 332 x^{11} - 2430 x^{10} - 16974 x^{9} + 102421 x^{8} - 131446 x^{7} - 365052 x^{6} + 1430580 x^{5} - 1448971 x^{4} - 1074064 x^{3} + 4472119 x^{2} - 5491088 x + 2822581 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5614886866882301027209678756129=23^{6}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{118} a^{14} + \frac{3}{59} a^{13} + \frac{23}{118} a^{12} + \frac{7}{118} a^{11} + \frac{13}{118} a^{9} - \frac{25}{118} a^{8} - \frac{29}{59} a^{7} + \frac{57}{118} a^{6} - \frac{5}{118} a^{5} - \frac{5}{59} a^{4} - \frac{39}{118} a^{3} - \frac{57}{118} a^{2} - \frac{15}{59} a + \frac{43}{118}$, $\frac{1}{8877327409417961841508698320995034001302} a^{15} - \frac{131243093720777874246334679611614061}{143182700151902610346914489048307000021} a^{14} - \frac{124447795365185878266600151284190487085}{8877327409417961841508698320995034001302} a^{13} + \frac{681084196221246754111458440026055248689}{4438663704708980920754349160497517000651} a^{12} - \frac{1676269181038856850394594042137238560881}{8877327409417961841508698320995034001302} a^{11} - \frac{1460455542371920040911698603513924014213}{8877327409417961841508698320995034001302} a^{10} - \frac{385363906251260969331802576537869203393}{8877327409417961841508698320995034001302} a^{9} - \frac{924540671061214790841280363305076053875}{8877327409417961841508698320995034001302} a^{8} + \frac{675083259884094242717397505770960802886}{4438663704708980920754349160497517000651} a^{7} - \frac{972327757998681120060390541328135738323}{4438663704708980920754349160497517000651} a^{6} - \frac{296083542743186563876662248893910597408}{4438663704708980920754349160497517000651} a^{5} - \frac{2396048416311884494336385989727140073731}{8877327409417961841508698320995034001302} a^{4} - \frac{119080751434740618483392634684633091690}{4438663704708980920754349160497517000651} a^{3} - \frac{2161934131185878369027887962719690944567}{4438663704708980920754349160497517000651} a^{2} - \frac{981555755836050054035382989656488258633}{8877327409417961841508698320995034001302} a + \frac{39487876782726856229217207732315290}{130522060302554795211407920736834093}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4121906138.16 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.4.103025010883049.3, 8.6.57794518300247.1, 8.6.4479348299263.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |