Normalized defining polynomial
\( x^{16} - x^{15} - 662 x^{14} - 9385 x^{13} - 65670 x^{12} - 687226 x^{11} - 5633748 x^{10} - 20006553 x^{9} - 345111236 x^{8} - 5406999958 x^{7} - 28256937548 x^{6} + 9956127740 x^{5} + 670089369972 x^{4} + 2925833801882 x^{3} + 6158845500328 x^{2} + 7013223282254 x + 3596679729757 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5600075906386661768959437042812533816731958913=17^{15}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $723.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{47} a^{14} - \frac{21}{47} a^{13} - \frac{1}{47} a^{12} + \frac{3}{47} a^{11} + \frac{17}{47} a^{10} + \frac{15}{47} a^{9} - \frac{9}{47} a^{8} + \frac{19}{47} a^{7} - \frac{23}{47} a^{6} - \frac{4}{47} a^{5} - \frac{20}{47} a^{4} + \frac{5}{47} a^{3} + \frac{1}{47} a^{2} - \frac{1}{47} a - \frac{1}{47}$, $\frac{1}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{15} + \frac{11428890178536827298268991822713088794585487983823816204889171599791633206860959462934}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{14} + \frac{534532730264195412099041577124899054379867070270312058568540628281452460151557440835737}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{13} + \frac{144702564508728189213220981056222451571202652282024350562945902219467021788416067577601}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{12} + \frac{792866178650100466298397820038168096046151190862887386347549423356419073252533092500733}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{11} + \frac{1254694211053871260609813726364174167498632125193814676423339491482660918467493188326402}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{10} + \frac{1036705112518994779045157580555515492920086885873281118078479792903165767838590140776402}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{9} - \frac{236998507593869650236187783918556072259307858621654405365093526498488484830106357804768}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{8} - \frac{1233785452814821671622813234778560549507908915533710198227679242162773481201998059951519}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{7} - \frac{1262717319368156572260472410989008558300723310676348018757683405605013148233005153303713}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{6} + \frac{1336276839013285434304417525695611011090618580660544153899478378661057708387559947814080}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{5} + \frac{688221875429479684264607075858303019533718934359005977535420796603254294302092463765485}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{4} + \frac{437133510489986517830323349126515738489750136629676690329457358747215634742998792947396}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{3} - \frac{837454871901801483062214011033228392170640604067720350178184219161457218821958560123193}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719} a^{2} + \frac{32808467419814908597957382735568981282530573584212865698043288480654069025678755382904}{72838362618785388797544271069377833848844405283318272779429614853216227748637997516377} a + \frac{1000040381298555507004889669864526032509156451977888287949648437611270779278706425367544}{3423403043082913273484580740260758190895687048315958820633191898101162704185985883269719}$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4692875402150000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.38915873.1, 8.8.203930643438763634753.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.2 | $x^{8} - 801$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |