Normalized defining polynomial
\( x^{16} - x^{15} - 662 x^{14} + 2719 x^{13} + 78065 x^{12} - 715973 x^{11} + 10413130 x^{10} - 41911767 x^{9} - 1159905613 x^{8} + 7553415536 x^{7} + 37089111838 x^{6} - 393273090724 x^{5} + 493775735297 x^{4} + 3751528448186 x^{3} - 13423616432713 x^{2} + 14170208488667 x - 4125171948377 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5600075906386661768959437042812533816731958913=17^{15}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $723.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{6}{19} a^{12} + \frac{8}{19} a^{11} - \frac{9}{19} a^{9} + \frac{8}{19} a^{8} + \frac{4}{19} a^{7} - \frac{5}{19} a^{5} - \frac{3}{19} a^{4} + \frac{3}{19} a^{3} + \frac{6}{19} a^{2} - \frac{5}{19} a - \frac{5}{19}$, $\frac{1}{413459} a^{14} - \frac{495}{21761} a^{13} + \frac{155582}{413459} a^{12} - \frac{156075}{413459} a^{11} + \frac{46009}{413459} a^{10} - \frac{149937}{413459} a^{9} + \frac{79472}{413459} a^{8} - \frac{151843}{413459} a^{7} - \frac{102206}{413459} a^{6} - \frac{103868}{413459} a^{5} + \frac{28732}{413459} a^{4} - \frac{24771}{413459} a^{3} + \frac{33433}{413459} a^{2} + \frac{140508}{413459} a - \frac{28340}{413459}$, $\frac{1}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{15} + \frac{148769998899969594358261220477852390163056288210047092111974810550426237859749619231728}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{14} - \frac{3970453564274667620002311083669329889938638307568345341323134602955678433709179213989273192}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{13} + \frac{63387467570054667126873555849059115232607985073009685615263762798101512310255649031834239184}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{12} - \frac{9062502771229018197577395430454551385231439023277080125982691704971504322934697481425381603}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{11} - \frac{9517658873502579674735274053938527955887220797117704382335194942241531509913550802419523081}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{10} - \frac{31800218074403221369005352955090362097325467669107021322740092140338458522491776076174308579}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{9} - \frac{9209923845938419024074348139035459753834494424735271935748067781146663437224030165311637906}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{8} - \frac{1970331686127567676123756216913736303167952282337557607544748998490864001617274979732444001}{4302305520762152105886470742099010818366110521696370227667968966426248170836654600273100587} a^{7} + \frac{3158545991693872250355463657647659206156728128674353681350506125352379749772939129330853619}{10642545235569534156666532888350184655958273395775231615810239022212298106806461379622933031} a^{6} + \frac{32789453321411597515610121155733211595308419321857019254588614279796468075919844075460457390}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{5} - \frac{100717987793781468828375078448397921679950841192580915693089953911067903808854447495691800406}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{4} - \frac{80659075007504848658477739064586612904420027302816748149986344401323416616596234243723779672}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{3} + \frac{47394055154006166476396919732222378730791487415462423192644185498814815849872815764028380404}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a^{2} + \frac{17257860528173236436071481642035794445543234854102203670322526874671988104578758798151139618}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589} a - \frac{3763814060985823085921877153547655074732143801437185935636592990669661945135850840360875561}{202208359475821148976664124878653508463207194519729400700394541422033664029322766212835727589}$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7990596409790000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.38915873.1, 8.8.203930643438763634753.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.8.7.2 | $x^{8} - 801$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |