Normalized defining polynomial
\( x^{16} - 8 x^{15} + 38 x^{14} - 126 x^{13} - 863 x^{12} + 5644 x^{11} - 21897 x^{10} + 80208 x^{9} + 139258 x^{8} - 1294348 x^{7} + 5356541 x^{6} - 14124804 x^{5} + 15506419 x^{4} + 77391304 x^{3} - 719056917 x^{2} + 902653490 x - 180997979 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55273437382717328226723918791876367935996449=37^{10}\cdot 101^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $541.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{400} a^{14} - \frac{1}{80} a^{13} - \frac{3}{200} a^{12} + \frac{1}{400} a^{11} + \frac{7}{200} a^{10} - \frac{43}{400} a^{9} - \frac{2}{25} a^{8} - \frac{41}{400} a^{7} + \frac{63}{400} a^{6} - \frac{17}{40} a^{5} - \frac{49}{100} a^{4} - \frac{81}{200} a^{3} + \frac{117}{400} a^{2} - \frac{47}{400} a + \frac{49}{400}$, $\frac{1}{3666183770074837308108817554846127957437044205462800} a^{15} + \frac{1274248317663108412977235577479802218265139236663}{1833091885037418654054408777423063978718522102731400} a^{14} - \frac{78025025703175311732151470791693547654382213155461}{3666183770074837308108817554846127957437044205462800} a^{13} + \frac{1281876520062518109422832944673218317235629256333}{733236754014967461621763510969225591487408841092560} a^{12} - \frac{83558870478108923369520736887376559422313649944471}{733236754014967461621763510969225591487408841092560} a^{11} - \frac{413051153344214571463786086042675365303345310205759}{3666183770074837308108817554846127957437044205462800} a^{10} - \frac{20683646637148636215687949637682733356439451052413}{733236754014967461621763510969225591487408841092560} a^{9} - \frac{83876241721961243091116003025522356135565837839483}{3666183770074837308108817554846127957437044205462800} a^{8} - \frac{152525302413653767452956022912720589354500351132077}{916545942518709327027204388711531989359261051365700} a^{7} + \frac{63003053927165025601385226852813787446559545952433}{3666183770074837308108817554846127957437044205462800} a^{6} + \frac{581096786528430347667354766727727676078561023503067}{1833091885037418654054408777423063978718522102731400} a^{5} - \frac{562528121576077150196384360408307282952141038459069}{1833091885037418654054408777423063978718522102731400} a^{4} - \frac{444061719027172854829252263186892805617005019211}{10327278225562921994672725506608811147709983677360} a^{3} - \frac{10162244850590807369025205161149388251689855334764}{45827297125935466351360219435576599467963052568285} a^{2} + \frac{92548944804894745386738260884709359164650399417949}{458272971259354663513602194355765994679630525682850} a - \frac{895105421185235565786492966104271852169752935559931}{3666183770074837308108817554846127957437044205462800}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13328976344000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3737}) \), \(\Q(\sqrt{101}) \), \(\Q(\sqrt{37}) \), 4.4.1410482069.1 x2, 4.4.38121137.1 x2, \(\Q(\sqrt{37}, \sqrt{101})\), 8.8.1989459666970520761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 37.8.6.2 | $x^{8} + 333 x^{4} + 34225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | 101.8.7.2 | $x^{8} - 404$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 101.8.7.2 | $x^{8} - 404$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |