Properties

Label 16.8.54806367357...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{24}\cdot 5^{4}\cdot 13^{6}\cdot 101^{8}$
Root discriminant $111.22$
Ramified primes $2, 5, 13, 101$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group 16T1276

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4225, 0, -3380, 0, -33462, 0, 2132, 0, 48747, 0, 9644, 0, -30, 0, -48, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 48*x^14 - 30*x^12 + 9644*x^10 + 48747*x^8 + 2132*x^6 - 33462*x^4 - 3380*x^2 + 4225)
 
gp: K = bnfinit(x^16 - 48*x^14 - 30*x^12 + 9644*x^10 + 48747*x^8 + 2132*x^6 - 33462*x^4 - 3380*x^2 + 4225, 1)
 

Normalized defining polynomial

\( x^{16} - 48 x^{14} - 30 x^{12} + 9644 x^{10} + 48747 x^{8} + 2132 x^{6} - 33462 x^{4} - 3380 x^{2} + 4225 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(548063673574853724539547811840000=2^{24}\cdot 5^{4}\cdot 13^{6}\cdot 101^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $111.22$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{520} a^{12} + \frac{1}{130} a^{10} - \frac{1}{8} a^{9} - \frac{17}{520} a^{8} - \frac{1}{4} a^{7} + \frac{5}{52} a^{6} - \frac{1}{8} a^{5} - \frac{3}{520} a^{4} - \frac{1}{2} a^{3} - \frac{9}{20} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{520} a^{13} + \frac{1}{130} a^{11} + \frac{6}{65} a^{9} - \frac{1}{8} a^{8} - \frac{2}{13} a^{7} - \frac{1}{4} a^{6} + \frac{31}{260} a^{5} - \frac{1}{8} a^{4} + \frac{1}{20} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{1016912013321360} a^{14} - \frac{1}{1040} a^{13} - \frac{210795746693}{508456006660680} a^{12} + \frac{61}{1040} a^{11} + \frac{12511066883953}{1016912013321360} a^{10} - \frac{3}{65} a^{9} + \frac{23467451933831}{203382402664272} a^{8} + \frac{29}{208} a^{7} - \frac{170251313609623}{1016912013321360} a^{6} + \frac{17}{260} a^{5} - \frac{38861505560083}{338970671107120} a^{4} - \frac{27}{80} a^{3} - \frac{326189408785}{1303733350412} a^{2} + \frac{1}{16} a - \frac{3439188227815}{15644800204944}$, $\frac{1}{1016912013321360} a^{15} + \frac{556208519423}{1016912013321360} a^{13} - \frac{1}{1040} a^{12} - \frac{11783683474349}{254228003330340} a^{11} + \frac{61}{1040} a^{10} - \frac{89956343046353}{1016912013321360} a^{9} - \frac{3}{65} a^{8} + \frac{24552961399219}{127114001665170} a^{7} + \frac{29}{208} a^{6} + \frac{23717695259693}{338970671107120} a^{5} + \frac{17}{260} a^{4} - \frac{10760921564539}{26074667008240} a^{3} - \frac{27}{80} a^{2} + \frac{1829152978271}{3911200051236} a + \frac{1}{16}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10109814464.1 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1276:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 43 conjugacy class representatives for t16n1276
Character table for t16n1276 is not computed

Intermediate fields

\(\Q(\sqrt{101}) \), 4.4.132613.1, 8.8.22510345944320.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.4.3.3$x^{4} + 26$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.4$x^{4} + 104$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$101$101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$