Normalized defining polynomial
\( x^{16} - 8 x^{15} + 22 x^{14} + 42 x^{13} - 587 x^{12} + 2002 x^{11} - 3040 x^{10} - 630 x^{9} + 17936 x^{8} - 53100 x^{7} + 61900 x^{6} + 55282 x^{5} - 228247 x^{4} + 181342 x^{3} + 119082 x^{2} - 223458 x + 73961 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(546207485068843417600000000=2^{24}\cdot 5^{8}\cdot 11^{6}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{5} + \frac{1}{5} a$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{25} a^{11} - \frac{1}{25} a^{10} + \frac{2}{25} a^{9} + \frac{1}{25} a^{8} - \frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{11}{25} a^{3} - \frac{12}{25} a^{2} - \frac{1}{25} a - \frac{2}{25}$, $\frac{1}{550} a^{12} - \frac{3}{275} a^{11} - \frac{4}{275} a^{10} - \frac{7}{275} a^{9} + \frac{17}{275} a^{8} - \frac{24}{275} a^{7} - \frac{2}{55} a^{6} - \frac{7}{55} a^{5} - \frac{52}{275} a^{4} + \frac{4}{275} a^{3} - \frac{38}{275} a^{2} - \frac{81}{275} a - \frac{47}{110}$, $\frac{1}{550} a^{13} + \frac{2}{275} a^{10} + \frac{19}{275} a^{9} - \frac{2}{55} a^{8} - \frac{1}{25} a^{7} + \frac{4}{275} a^{6} + \frac{13}{275} a^{5} - \frac{3}{25} a^{4} + \frac{118}{275} a^{3} + \frac{87}{275} a^{2} - \frac{151}{550} a - \frac{89}{275}$, $\frac{1}{30250} a^{14} + \frac{2}{15125} a^{13} - \frac{21}{30250} a^{12} - \frac{287}{15125} a^{11} + \frac{243}{15125} a^{10} - \frac{216}{15125} a^{9} + \frac{8}{121} a^{8} + \frac{1091}{15125} a^{7} + \frac{127}{3025} a^{6} - \frac{6286}{15125} a^{5} + \frac{603}{1375} a^{4} - \frac{1362}{15125} a^{3} - \frac{4041}{30250} a^{2} + \frac{5842}{15125} a - \frac{14279}{30250}$, $\frac{1}{11943188692248752049262250} a^{15} + \frac{1535857374524507257}{2388637738449750409852450} a^{14} - \frac{2399906821054759841346}{5971594346124376024631125} a^{13} + \frac{22583921191109319749}{2388637738449750409852450} a^{12} - \frac{64308039365726922105009}{5971594346124376024631125} a^{11} - \frac{64752226338709167633283}{5971594346124376024631125} a^{10} + \frac{411571338462076827864994}{5971594346124376024631125} a^{9} - \frac{76443156875847782554664}{5971594346124376024631125} a^{8} - \frac{61020067281870632924409}{5971594346124376024631125} a^{7} + \frac{537792833471606048949729}{5971594346124376024631125} a^{6} - \frac{6525800815238182312127}{28572221751791272845125} a^{5} + \frac{1320321249762954090022681}{5971594346124376024631125} a^{4} - \frac{1141453341771929083068647}{2388637738449750409852450} a^{3} - \frac{4653736736504656807131607}{11943188692248752049262250} a^{2} - \frac{523258549082856025380798}{1194318869224875204926225} a - \frac{133497405053938868359569}{1085744426568068368114750}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38808361.0147 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n868 are not computed |
| Character table for t16n868 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.5225.1, 4.4.4400.1, 4.4.7600.1, 8.8.6988960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.24 | $x^{8} + 4 x^{6} + 28 x^{4} + 80$ | $4$ | $2$ | $12$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.8.12.22 | $x^{8} + 4 x^{7} + 16 x^{3} + 48$ | $4$ | $2$ | $12$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.8.6.2 | $x^{8} - 19 x^{4} + 5776$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |