Normalized defining polynomial
\( x^{16} - 4 x^{15} - 36 x^{14} + 88 x^{13} + 1143 x^{12} - 3082 x^{11} - 14066 x^{10} + 47012 x^{9} + 69843 x^{8} - 294992 x^{7} - 174982 x^{6} + 856700 x^{5} + 436787 x^{4} - 1275944 x^{3} - 877846 x^{2} + 805466 x + 703921 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(545664914012032080281600000000=2^{24}\cdot 5^{8}\cdot 13^{6}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{781} a^{14} + \frac{259}{781} a^{13} - \frac{195}{781} a^{12} + \frac{267}{781} a^{11} - \frac{375}{781} a^{10} + \frac{233}{781} a^{9} + \frac{30}{71} a^{8} + \frac{12}{71} a^{7} - \frac{106}{781} a^{6} - \frac{9}{781} a^{5} - \frac{333}{781} a^{4} - \frac{327}{781} a^{3} + \frac{334}{781} a^{2} + \frac{35}{71} a - \frac{42}{781}$, $\frac{1}{199648135347243241272087504906962833109} a^{15} + \frac{68950640394668612497521941232716703}{199648135347243241272087504906962833109} a^{14} - \frac{84595747631545478268901922469772265456}{199648135347243241272087504906962833109} a^{13} + \frac{20851588870451478236600695446011558344}{199648135347243241272087504906962833109} a^{12} + \frac{66402410095298468095051550704392051478}{199648135347243241272087504906962833109} a^{11} - \frac{43946101565457096842357863735302179166}{199648135347243241272087504906962833109} a^{10} + \frac{6423766855366747348046103219957989111}{199648135347243241272087504906962833109} a^{9} - \frac{8462784942679694699740861140372522599}{18149830486113021933826136809723893919} a^{8} + \frac{22981770444732542223567652122546508883}{199648135347243241272087504906962833109} a^{7} + \frac{54460223711052825626103034581156359894}{199648135347243241272087504906962833109} a^{6} - \frac{80004261162588862210323958566901591212}{199648135347243241272087504906962833109} a^{5} + \frac{75672886867365392240527177534410547364}{199648135347243241272087504906962833109} a^{4} - \frac{186201294470234846269451561247078772}{2811945568271031567212500069112152579} a^{3} + \frac{24021167698924225392328577254567324419}{199648135347243241272087504906962833109} a^{2} + \frac{49125917709847516674501471557211074624}{199648135347243241272087504906962833109} a - \frac{21504533256023037769861544309326379433}{199648135347243241272087504906962833109}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 291693993.029 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1558 are not computed |
| Character table for t16n1558 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.659478560000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 13.8.6.4 | $x^{8} - 13 x^{4} + 338$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 29.8.7.3 | $x^{8} + 58$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |