Normalized defining polynomial
\( x^{16} + 4 x^{14} - 340 x^{12} - 4274 x^{10} + 21474 x^{8} + 417716 x^{6} + 567385 x^{4} - 14046266 x^{2} + 4709861 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(545664914012032080281600000000=2^{24}\cdot 5^{8}\cdot 13^{6}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} - \frac{3}{10} a^{2} + \frac{1}{10}$, $\frac{1}{10} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{3}{10} a^{3} + \frac{1}{10} a$, $\frac{1}{10} a^{10} + \frac{2}{5} a^{6} + \frac{1}{10} a^{4} - \frac{3}{10} a^{2} - \frac{1}{5}$, $\frac{1}{10} a^{11} + \frac{2}{5} a^{7} + \frac{1}{10} a^{5} - \frac{3}{10} a^{3} - \frac{1}{5} a$, $\frac{1}{511420} a^{12} + \frac{4681}{127855} a^{10} - \frac{1}{20} a^{9} + \frac{1493}{511420} a^{8} - \frac{1}{10} a^{7} + \frac{12933}{102284} a^{6} + \frac{1}{10} a^{5} + \frac{12283}{511420} a^{4} - \frac{7}{20} a^{3} - \frac{1331}{5620} a^{2} + \frac{9}{20} a - \frac{10603}{39340}$, $\frac{1}{511420} a^{13} + \frac{4681}{127855} a^{11} - \frac{1}{20} a^{10} + \frac{1493}{511420} a^{9} + \frac{12933}{102284} a^{7} + \frac{3}{10} a^{6} + \frac{12283}{511420} a^{5} + \frac{9}{20} a^{4} - \frac{1331}{5620} a^{3} + \frac{3}{20} a^{2} - \frac{10603}{39340} a + \frac{1}{10}$, $\frac{1}{1493610484303557620} a^{14} + \frac{883994076319}{1493610484303557620} a^{12} - \frac{1}{20} a^{11} - \frac{28983547153015227}{1493610484303557620} a^{10} - \frac{1}{20} a^{9} + \frac{1312340426577637}{67891385650161710} a^{8} + \frac{1}{5} a^{7} + \frac{11506205728698689}{106686463164539830} a^{6} - \frac{9}{20} a^{5} + \frac{15661756385810529}{373402621075889405} a^{4} - \frac{1}{5} a^{3} - \frac{13919580703972793}{28723278544299185} a^{2} - \frac{9}{20} a + \frac{6167635024788793}{114893114177196740}$, $\frac{1}{46301925013410286220} a^{15} + \frac{35930190571651}{46301925013410286220} a^{13} - \frac{2210638484151178337}{46301925013410286220} a^{11} - \frac{1}{20} a^{10} + \frac{635801513046333}{64757937081692708} a^{9} - \frac{1}{20} a^{8} - \frac{3164529178723376634}{11575481253352571555} a^{7} + \frac{1}{5} a^{6} - \frac{26081184156504494}{11575481253352571555} a^{5} - \frac{9}{20} a^{4} - \frac{100715605828767403}{3561686539493098940} a^{3} - \frac{1}{5} a^{2} + \frac{240397070582851486}{890421634873274735} a - \frac{9}{20}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 277838154.403 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1558 are not computed |
| Character table for t16n1558 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.659478560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.8.6.3 | $x^{8} + 65 x^{4} + 1352$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $29$ | 29.8.7.3 | $x^{8} + 58$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |