Normalized defining polynomial
\( x^{16} - 2 x^{15} - 41 x^{14} + 80 x^{13} + 632 x^{12} - 1120 x^{11} - 5162 x^{10} + 8438 x^{9} + 24054 x^{8} - 40078 x^{7} - 60417 x^{6} + 106560 x^{5} + 89052 x^{4} - 107440 x^{3} - 111076 x^{2} - 6438 x + 15101 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53586372784036249600000000=2^{24}\cdot 5^{8}\cdot 19^{4}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{3}{16} a^{10} - \frac{7}{16} a^{9} - \frac{1}{16} a^{8} + \frac{5}{16} a^{7} + \frac{1}{16} a^{6} + \frac{1}{16} a^{5} + \frac{7}{16} a^{4} + \frac{1}{8} a^{3} - \frac{5}{16} a - \frac{7}{16}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} + \frac{15}{32} a^{4} + \frac{1}{16} a^{3} - \frac{1}{32} a^{2} + \frac{3}{32}$, $\frac{1}{187467103864093621280606481770848} a^{15} - \frac{1289969389004514207143440588341}{93733551932046810640303240885424} a^{14} + \frac{299720027713368549035114799349}{23433387983011702660075810221356} a^{13} + \frac{1753777398858108303830595900629}{46866775966023405320151620442712} a^{12} + \frac{50030641192887740870251187773}{5858346995752925665018952555339} a^{11} - \frac{3571584869367904369557639676699}{46866775966023405320151620442712} a^{10} - \frac{42098183899100716395295204769493}{93733551932046810640303240885424} a^{9} - \frac{17613821502087642894190473794675}{93733551932046810640303240885424} a^{8} + \frac{5014545972390751456152029804943}{46866775966023405320151620442712} a^{7} - \frac{4446070990999093471152446395977}{11716693991505851330037905110678} a^{6} - \frac{40224684733508106995151830032265}{187467103864093621280606481770848} a^{5} - \frac{1431594367164169086185965385389}{23433387983011702660075810221356} a^{4} - \frac{8800345459963505238374185618901}{187467103864093621280606481770848} a^{3} + \frac{687138259721406444370957002513}{93733551932046810640303240885424} a^{2} + \frac{171678304928832074376357252347}{4572368386929112714161133701728} a + \frac{24715974087271413548025589870683}{93733551932046810640303240885424}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5313442.23444 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^4$ (as 16T573):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^4.C_2^4$ |
| Character table for $C_2^4.C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.7600.1, 4.4.2225.1, 4.4.676400.1, 8.8.457516960000.1, 8.4.316840000.1, 8.4.1830067840000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.12 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 12$ | $4$ | $2$ | $16$ | $C_2^2:C_4$ | $[2, 2, 3]^{2}$ |
| 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |