Properties

Label 16.8.53586372784...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{24}\cdot 5^{8}\cdot 19^{4}\cdot 89^{4}$
Root discriminant $40.56$
Ramified primes $2, 5, 19, 89$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_2^4.C_2^4$ (as 16T573)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-109, 18906, -39260, -30432, 144336, -158654, 89417, -31290, 6018, 2270, -2560, 1132, -338, 46, -5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 5*x^14 + 46*x^13 - 338*x^12 + 1132*x^11 - 2560*x^10 + 2270*x^9 + 6018*x^8 - 31290*x^7 + 89417*x^6 - 158654*x^5 + 144336*x^4 - 30432*x^3 - 39260*x^2 + 18906*x - 109)
 
gp: K = bnfinit(x^16 - 2*x^15 - 5*x^14 + 46*x^13 - 338*x^12 + 1132*x^11 - 2560*x^10 + 2270*x^9 + 6018*x^8 - 31290*x^7 + 89417*x^6 - 158654*x^5 + 144336*x^4 - 30432*x^3 - 39260*x^2 + 18906*x - 109, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 5 x^{14} + 46 x^{13} - 338 x^{12} + 1132 x^{11} - 2560 x^{10} + 2270 x^{9} + 6018 x^{8} - 31290 x^{7} + 89417 x^{6} - 158654 x^{5} + 144336 x^{4} - 30432 x^{3} - 39260 x^{2} + 18906 x - 109 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(53586372784036249600000000=2^{24}\cdot 5^{8}\cdot 19^{4}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.56$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{52094811458334475662026475180263842876} a^{15} + \frac{2353166312127218024936960213093115889}{52094811458334475662026475180263842876} a^{14} + \frac{1102309449972360603174365776086721199}{26047405729167237831013237590131921438} a^{13} - \frac{2480472645651008454607229810374073929}{13023702864583618915506618795065960719} a^{12} + \frac{6078669260940908562852344895235813473}{13023702864583618915506618795065960719} a^{11} + \frac{5653238696112057741064237071767394791}{13023702864583618915506618795065960719} a^{10} + \frac{5351981124109754237893529445134901979}{26047405729167237831013237590131921438} a^{9} - \frac{1156488789555349999924214301170458981}{13023702864583618915506618795065960719} a^{8} + \frac{2040643917689444120008496856284327038}{13023702864583618915506618795065960719} a^{7} + \frac{11789964272397916720807535594713526825}{26047405729167237831013237590131921438} a^{6} - \frac{11471714030733238057246265423646798903}{52094811458334475662026475180263842876} a^{5} + \frac{18840552953347777909500646787868113617}{52094811458334475662026475180263842876} a^{4} - \frac{19464482383922426502415086178980276439}{52094811458334475662026475180263842876} a^{3} - \frac{6792263422134026720241467399576429693}{52094811458334475662026475180263842876} a^{2} - \frac{21816299092325068461149693388685170483}{52094811458334475662026475180263842876} a + \frac{13674572066287780221124972438913725513}{52094811458334475662026475180263842876}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4650630.48016 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^4$ (as 16T573):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 46 conjugacy class representatives for $C_2^4.C_2^4$
Character table for $C_2^4.C_2^4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2225.1, 4.4.7600.1, 4.4.676400.2, 8.8.457516960000.2, 8.4.316840000.1, 8.4.1830067840000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.12$x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 12$$4$$2$$16$$C_2^2:C_4$$[2, 2, 3]^{2}$
2.8.8.2$x^{8} + 2 x^{7} + 8 x^{2} + 48$$2$$4$$8$$C_2^2:C_4$$[2, 2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$89$89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$