Normalized defining polynomial
\( x^{16} - 54 x^{14} - 159 x^{12} - 3080 x^{11} - 18048 x^{10} - 124520 x^{9} - 333886 x^{8} - 759000 x^{7} - 8160964 x^{6} + 2291740 x^{5} + 98870734 x^{4} + 22356840 x^{3} - 53694970 x^{2} - 5479100 x + 5427475 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5347975059777049895895040000000000=2^{32}\cdot 5^{10}\cdot 11^{8}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{32245} a^{14} - \frac{521}{6449} a^{13} - \frac{3554}{32245} a^{12} + \frac{2306}{6449} a^{11} - \frac{9204}{32245} a^{10} + \frac{1998}{6449} a^{9} - \frac{9938}{32245} a^{8} + \frac{593}{6449} a^{7} - \frac{4006}{32245} a^{6} + \frac{389}{6449} a^{5} + \frac{11186}{32245} a^{4} + \frac{694}{6449} a^{3} - \frac{13986}{32245} a^{2} + \frac{802}{6449} a - \frac{1913}{6449}$, $\frac{1}{83648779937863693113447274540190398421154856794150718184293505} a^{15} + \frac{105317659591880689681065300836825451658397477368321132647}{16729755987572738622689454908038079684230971358830143636858701} a^{14} - \frac{146587924226406135701653174872059149592813857556425549423661}{561401207636669081298303855974432204168824542242622269693245} a^{13} - \frac{40949961130880107092600406713327307119833496509896752224097}{112280241527333816259660771194886440833764908448524453938649} a^{12} - \frac{34799897935221289886775243824011906900246854141762866147833394}{83648779937863693113447274540190398421154856794150718184293505} a^{11} + \frac{749057520341632415842298452113336249450029980534402222529990}{16729755987572738622689454908038079684230971358830143636858701} a^{10} - \frac{9820536517922358708088486587556651440691787991783599462057408}{83648779937863693113447274540190398421154856794150718184293505} a^{9} - \frac{546589584762401566131281632212302598146908885255308867117059}{16729755987572738622689454908038079684230971358830143636858701} a^{8} + \frac{39109986771318663736616826236146577654989838255167274944229389}{83648779937863693113447274540190398421154856794150718184293505} a^{7} - \frac{3870775095399453809221150927798159671447911127616610000470933}{16729755987572738622689454908038079684230971358830143636858701} a^{6} - \frac{39977041847638982792284974516910475450212136624442796087432429}{83648779937863693113447274540190398421154856794150718184293505} a^{5} + \frac{5766548442956012532837398854400559863592456215332106376015840}{16729755987572738622689454908038079684230971358830143636858701} a^{4} - \frac{28339405058900900132861318409926160053814369607539008494513406}{83648779937863693113447274540190398421154856794150718184293505} a^{3} - \frac{2074231043821711643512690896335738867266917511364408398876385}{16729755987572738622689454908038079684230971358830143636858701} a^{2} + \frac{1993558086771197812409614777257054237161001128787023158577164}{16729755987572738622689454908038079684230971358830143636858701} a - \frac{231558678307152216663276926105970720638055757940382771063034}{16729755987572738622689454908038079684230971358830143636858701}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49349732781.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T456):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{110}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{22}) \), 4.4.5614400.1, 4.4.725.1, \(\Q(\sqrt{5}, \sqrt{22})\), 8.8.31521487360000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |